人教版九年级上册数学:21.2.1一元二次方程的解法 配方法教案

文档属性

名称 人教版九年级上册数学:21.2.1一元二次方程的解法 配方法教案
格式 zip
文件大小 20.7KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2020-08-06 15:05:41

图片预览

文档简介

一元二次方程的解法(配方法)
教学目标:
(一)知识与技能:
1、理解并掌握用配方法解简单的一元二次方程。
2、能利用配方法解决实际问题,增强学生的数学应用意识和能力。
(二)过程与方法目标:
1、经历探索利用配方法解一元二次方程的过程,使学生体会到转化的数学思想。
2、在理解配方法的基础上,熟练应用配方法解一元二次方程的过程,培养学生用转化的数学思想解决实际问题的能力。
(三)情感,态度与价值观
启发学生学会观察,分析,寻找解题的途径,提高学生分析问题,解决问题的能力。
教学重点、难点:
重点:理解并掌握配方法,能够灵活运用用配方法解一元二次方程。
难点:通过配方把一元二次方程转化为(x+m)2=n(n≥0)的形式。
教学方法:根据教学内容的特点及学生的年龄、心理特征及已有的知识水平,本节课采用问题教学和对比教学法,用“创设情境——建立数学模型——巩固与运用——反思、拓展”来展示教学活动。
教学过程:
教学过程
教学内容
学生活动
设计意图

复习旧知
用直接开平方法解下列方程:
(1)9x2=4
(2)(
x+3)2=0
总结:上节课我们学习了用直接开平方法解形如(x+m)2=n(n≥0)的方程。

创设情境,设疑引新
在实际生活中,我们常常会遇到一些问题,需要用一元二次方程来解决。
例:小明用一段长为20米的竹篱笆围成一个矩形,怎样设计才可以使得矩形的面积为9米?

新知探究
1
提问:这样的方程你能解吗?
X2+6x+9=0

2、提问:这样的方程你能解吗?
X2+6x+4=0

思考:方程②与方程①有什么不同?能否把它化成方程①的形式呢?
归纳总结配方法:
通过配成完全平方式的方法,得到一元二次方程的解,这样的解法叫做配方法。
配方法的依据:完全平方公式
配方法的关键:给方程的两边同时加上一次项系数一半的平方
先通过移项将方程左边化为x2+ax形式,然后两边同时加上一次项系数一半的平方进行配方,然后直接开平方求解。

合作讨论,自主探究
1、
配方训练
(1)
x2+12x+(
)=(x+6)2
(2)
x2-12x+(
)=(x-
)2
(3)
x2+8x+(
)=(x+
)2
(4)
x2+mx+(
)=(x+
)2
强调:当一次项系数为负数或分数时,要注意运算的准确性。
2、将下列方程化为(x+m)2=n
(n≥0)的形式并计算出X值。
(1)x2-4x+3=0
(2)x2+3x-1=0
解:X2-4X+3=0
移向:得X2-4X=-3
配方:得X2-4X+22=-3+22(两边同时加上一次项系数一半的平方)
即:(X-2)2=1
开平方,得:X-2=1或X-2=-1
所以:X=3或X=1
方程(2)有学生完成。
3、巩固训练:课本55页随堂练习第一题。

小结
1、用配方法解二次项系数为一的一元二次方程的基本思路:先将方程化为(x+m)2=n(n≥0)的形式,然后两边开平方就可以得到方程的解。
2、用配方法解二次项系数为一的一元二次方程的一般步骤:
(1)
移项(常数项移到方程右边)
(2)
配方(方程两边都加上一次项系数的一半的平方)
(3)
开平方
(4)
解出方程的根

布置作业
习题2.3第1,2题
两个学生黑板上那解题,剩余学生练习本上计算。
学生观看课件,思考老师提出的问题,得到:设该矩形的长为x米,依题意得
x(10-x)=9
但是发现所列方程无法用直接开平方法解。于是引入新课。
学生通过观察发现,方程的左边是一个完全平方式,可以化为(
x+3)2=0,然后就可以运用上节课学过的直接开平方法解了。
方程②的左边不是一个完全平方式,于是不能直接开平方。学生陷入思考,给学生充分思考、交流的时间和空间。
在学生思考的时候,老师引导学生将方程②与方程①进行对比分析,然后得到:
X2+6x=-4
X2+6x+9=-4+9
(x+3)2=5
从而可以用直接开平方法解,给出完整的解题过程。
在学生充分思考、讨论的基础上总结:配方时,常数项为一次项系数的一半的平方。
检查学生的练习情况。小组合作交流。
学生归纳后教师再做相应的补充和强调。
学生分组完成方程(2)和课后随堂练习第一题
学生分组总结本节课知识内容。
让学生先独立解题来体会直接开平方法是配方法的基础。
从实际问题出发,让学生感受到“生活中处处有数学”,并感受到问题的存在,从而激发学生的求知欲。让学生独立解题,感受到解题的困难,然后引导学生去观察方程的特点,寻找解一元二次方程的新的解法,培养学生勇于探索的精神。
引导学生通过对比两个方程,发现它们之间的联系,从而找到解决问题的突破口,依据完全平方公式进行配方,初步体会和理解配方法。
体会从特殊到一般,具体到抽象的思维过程。
通过练习深化配方的过程,为下一步学习配方法做铺垫。几个问题的设计是层层递进,化解了教学的难度。学生在探索、交流的过程掌握了知识,培养了能力。
通过练习,进一步体会配方法的解题步骤,并体会配方法和直接开平方法的联系。基础训练是为了巩固学生对重点内容的掌握。
将所学的知识进行归纳、总结,可以进一步巩固所学知识,使学生对本节内容有较为系统的再认识,起到前呼后应的作用。
教学反思:
配方法是初中数学教学中的重要内容,也是数学学习的主要思想方法。本节课我在教材的处理上,既注意到新教材、新理念的实施,又考虑到传统教学优势的传承,使自主探究、合作交流的学习方式与数学基础知识、基本技能的牢固掌握、灵活应用有效结合。新的课程标准突出了数学知识的实际应用,所以在教学实际中,我力求将解方程的基本技能训练与实际问题的解决融为一体,在解决实际问题的过程中提高学生的解题能力。因此,我先创设了一个实际问题的情境,让学生感受到“生活中处处有数学”。为了突破本节课的难点,我在教学中注意找准学生的最近发展区,主要以启发学生进行探究的形式展开。在知识探究的过程中,设计了几个既有联系又层层递进的问题,使学生在探究的过程中能体会到成功的喜悦。本节的重点是配方法解一元二次方程的探究,让学生体会从特殊到一般,从具体到抽象的思维过程。在教学中,自主探究,合作交流,学生在探究的过程中掌握了和理解了配方法。小结的时候教师要根据实际情况进行补充和强调,主要是以下两个方面:在知识方面,要回顾配方法解方程的一般步骤和依据;在方法方面,注意解一元二次方程的思想是“降次”。课后作业注重基础知识和基本技能的训练,又注意为下一节学习做准备。