21.2.2 第4课时 二次函数y=ax2+bx+c的图象和性质(重点练)原卷+解析-2020-2021学年(九上)十分钟同步课堂练(沪科版))

文档属性

名称 21.2.2 第4课时 二次函数y=ax2+bx+c的图象和性质(重点练)原卷+解析-2020-2021学年(九上)十分钟同步课堂练(沪科版))
格式 zip
文件大小 3.4MB
资源类型 试卷
版本资源 沪科版
科目 数学
更新时间 2020-08-07 21:11:38

文档简介

中小学教育资源及组卷应用平台
1.关于二次函数的三个结论:①对任意实数m,都有与对应的函数值相等;②若3≤x≤4,对应的y的整数值有4个,则或;③若抛物线与x轴交于不同两点A,B,且AB≤6,则或.其中正确的结论是(

A.①②
B.①③
C.②③
D.①②③
2.已知点A(﹣3,y1),B(2,y2)均在抛物线y=ax2+bx+c上,点P(m,n)是该抛物线的顶点,若y1>y2≥n,则m的取值范围是(  )
A.﹣3<m<2
B.﹣<m<-
C.m>﹣
D.m>2
3.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中结论正确的有(

A.①③
B.①④
C.①②
D.①③④
4.的图像如图所示,对称轴,若关于的(为实数)在的范围内有解,则的取值范围是(

A.
B.
C.
D.
5.已知二次函数的图像的对称轴为直线,开口向下,且与轴的其中的一个交点是,下列结论:①;②;③;④正确的个数是(

A.1个
B.2个
C.3个
D.4个
6.如图,二次函数y=ax2+bx+c(a≠0)图象的顶点为D,其图象与x轴的交点A,B的横坐标分别为﹣1,3,与y轴负半轴交于点C.以下五个结论:①2a+b=0;②a+b+c>0;③4a+b+c>0;④只有当a=时,△ABD是等腰直角三角形;⑤使△ACB为等腰三角形的a的值可以有两个.那么,其中正确的结论是_____.
7.如图,抛物线过点,且对称轴为直线,有下列结论:
①;②;③抛物线经过点与点,则;④无论取何值,抛物线都经过同一个点;⑤,其中所有正确的结论是__________.
8.如图,二次函数的图象与轴交于,对称轴为直线,与轴的交点在和之间(不包括这两个点),下列结论:①当时,;②;③当时,;④.其中正确的结论的序号是___________.
9.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点,有下列结论:
①abc0;
②a﹣2b+4c=0;
③25a﹣10b+4c=0;
④3b+2c0;
⑤a﹣b≥m(am﹣b);
其中所有正确的结论是______.(填写正确结论的序号)
原创精品资源学科网独家享有版权,侵权必究!
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
中小学教育资源及组卷应用平台
(
21.2.2第4课时二次函数y=ax
2
+
bx
+
c的图象和性质(重点练)
)
1.关于二次函数的三个结论:①对任意实数m,都有与对应的函数值相等;②若3≤x≤4,对应的y的整数值有4个,则或;③若抛物线与x轴交于不同两点A,B,且AB≤6,则或.其中正确的结论是(

A.①②
B.①③
C.②③
D.①②③
【答案】D
【解析】
【分析】
由题意可求次函数y=ax2-4ax-5的对称轴为直线,由对称性可判断①;分a>0或a<0两种情况讨论,由题意列出不等式,可求解,可判断②;分a>0或a<0两种情况讨论,由题意列出不等式组,可求解,可判断③;即可求解.
【详解】
解:∵抛物线的对称轴为,
∴x1=2+m与x2=2-m关于直线x=2对称,
∴对任意实数m,都有x1=2+m与x2=2-m对应的函数值相等;
故①正确;
当x=3时,y=-3a-5,当x=4时,y=-5,
若a>0时,当3≤x≤4时,-3a-5<y≤-5,
∵当3≤x≤4时,对应的y的整数值有4个,
∴,
若a<0时,当3≤x≤4时,-5≤y<-3a-5,
∵当3≤x≤4时,对应的y的整数值有4个,
∴,
故②正确;
若a>0,抛物线与x轴交于不同两点A,B,且AB≤6,
∴△>0,25a-20a-5≥0,
∴,
∴;
若a<0,抛物线与x轴交于不同两点A,B,且AB≤6,
∴△>0,25a-20a-5≤0,

∴a<,
综上所述:当a<或a≥1时,抛物线与x轴交于不同两点A,B,且AB≤6.
故③正确;
故选:D.
【点评】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数图象与x轴的交点等知识,理解题意列出不等式(组)是本题的关键.
2.已知点A(﹣3,y1),B(2,y2)均在抛物线y=ax2+bx+c上,点P(m,n)是该抛物线的顶点,若y1>y2≥n,则m的取值范围是(  )
A.﹣3<m<2
B.﹣<m<-
C.m>﹣
D.m>2
【答案】C
【解析】
【分析】
根据点A(﹣3,y1),B(2,y2)均在抛物线y=ax2+bx+c上,点P(m,n)是该抛物线的顶点,y1>y2≥n,可知该抛物线开口向上,对称轴是直线x=m,则
<m,从而可以求得m的取值范围,本题得以解决.
【详解】
解:∵点A(﹣3,y1),B(2,y2)均在抛物线y=ax2+bx+c上,点P(m,n)是该抛物线的顶点,y1>y2≥n,
∴抛物线有最小值,
∴抛物线开口向上,
∴点A到对称轴的距离比点B到对称轴的距离大,
∴<m,
解得m>

故选C.
【点评】本题考查了二次函数性质,主要利用了二次函数的增减性以及对称轴,判断出抛物线开口向上是解题的关键.
3.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中结论正确的有(

A.①③
B.①④
C.①②
D.①③④
【答案】B
【解析】
【分析】
由图象可知,当x=1时,y=a+b+c最大,故①正确;当x=﹣1时,y=a﹣b+c=0,故②错误;二次函数与x轴有两个不同交点,因此b2﹣4ac>0,故③错误;对称轴为x=1,B(﹣1,0),所以A(3,0),由图象可得,y>0时,﹣l<x<3,故④正确.
【详解】
解:①由图象可知,x=1时,y=a+b+c最大,因此二次函数的最大值为a+b+c,故①正确;
②由图象可知,x=-1时,y=0,即a-b+c=0,因此a-b+c=0,故②错误;
③由图象可知,函数图象与x轴有两个不同交点,因此b2﹣4ac>0,故③错误;
④∵对称轴为x=1,B(-1,0),
∴A(3,0),
∴y>0时,-1<x<3,
故④正确,
则答案为:①④.
故选:B.
【点评】本题考查了二次函数图象与系数的关系.熟练掌握二次函数图象的性质是解题的关键.
4.的图像如图所示,对称轴,若关于的(为实数)在的范围内有解,则的取值范围是(

A.
B.
C.
D.
【答案】C
【解析】
【分析】
根据二次函数解析式求出最小值,再求出x=4时的函数值,然后根据二次函数的增减性写出t的取值范围即可.
【详解】
解:∵对称轴为直线x=1,
∴,
解得:,
∴;
当x=1时,,此时y为最小值;
当x=4时,,
∴在-1<x<4的范围内有:-1≤y<8,
∵x2+bx-t=0可变形为x2+bx=t,
∴.
故选:C.
【点评】本题考查了二次函数的性质,主要利用了二次函数的对称轴,二次函数的增减性以及最值问题,要注意自变量的取值范围的影响.
5.已知二次函数的图像的对称轴为直线,开口向下,且与轴的其中的一个交点是,下列结论:①;②;③;④正确的个数是(

A.1个
B.2个
C.3个
D.4个
【答案】C
【解析】
【分析】
根据题意,由对称轴为直线,开口向下,则,抛物线与x轴的另一个交点为,当时,可判断①;当时,可判断②;由,可判断③;由,代入计算,即可判断④;然后得到答案.
【详解】
解:根据题意,
∵二次函数的图像的对称轴为直线,开口向下,且与轴的其中的一个交点是,
∴,抛物线与x轴的另一个交点为,,
由图可知,当时,函数图像在x轴上方,则,
∴当时,,故①正确;
∵抛物线经过点,
∴当时,,故②错误;
∵,,
∴,
∴,故③正确;
∵,,
∴,
∵,则,
∴,故④正确;
∴正确的选项有①③④,共3个;
故选:C.
【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).
6.如图,二次函数y=ax2+bx+c(a≠0)图象的顶点为D,其图象与x轴的交点A,B的横坐标分别为﹣1,3,与y轴负半轴交于点C.以下五个结论:①2a+b=0;②a+b+c>0;③4a+b+c>0;④只有当a=时,△ABD是等腰直角三角形;⑤使△ACB为等腰三角形的a的值可以有两个.那么,其中正确的结论是_____.
【答案】①④⑤
【解析】
【分析】
先根据图象与x轴的交点A,B的横坐标分别为-1,3确定出AB的长及对称轴,再由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
解:①∵图象与x轴的交点A,B的横坐标分别为﹣1,3,
∴AB=4,
∴对称轴x===1,
即2a+b=0;
故①正确;
②由抛物线的开口方向向上可推出a>0,而>0
∴b<0,
∵对称轴x=1,
∴当x=1时,y<0,
∴a+b+c<0;
故②错误;
③∵图象与x轴的交点A,B的横坐标分别为﹣1,3,
∴a﹣b+c=0,9a+3b+c=0,
∴10a+2b+2c=0,
∴5a+b+c=0,
∴a+4a+b+c=0,
∵a>0,
∴4a+b+c<0,
故③错误;
④要使△ABD为等腰直角三角形,必须保证D到x轴的距离等于AB长的一半;
D到x轴的距离就是当x=1时y的值的绝对值.
当x=1时,y=a+b+c,
即|a+b+c|=2,
∵当x=1时y<0,
∴a+b+c=﹣2,
又∵图象与x轴的交点A,B的横坐标分别为﹣1,3,
∴当x=﹣1时y=0即a﹣b+c=0;
x=3时y=0.
∴9a+3b+c=0,
解这三个方程可得:b=﹣1,a=,c=﹣;
⑤要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,
当AB=BC=4时,
∵AO=1,△BOC为直角三角形,
又∵OC的长即为|c|,
∴c2=16﹣9=7,
∵由抛物线与y轴的交点在y轴的负半轴上,
∴c=﹣,
与2a+b=0、a﹣b+c=0联立组成解方程组,解得a=;
同理当AB=AC=4时,
∵AO=1,△AOC为直角三角形,
又∵OC的长即为|c|,
∴c2=16﹣1=15,
∵由抛物线与y轴的交点在y轴的负半轴上,
∴c=﹣
与2a+b=0、a﹣b+c=0联立组成解方程组,解得a=;
同理当AC=BC时
在△AOC中,AC2=1+c2,
在△BOC中BC2=c2+9,
∵AC=BC,
∴1+c2=c2+9,此方程无解.
经解方程组可知只有两个a值满足条件.
故⑤正确.
故答案为:①④⑤.
【点评】二次函数y=ax2+bx+c系数符号的确定:
(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;
(2)b由对称轴和a的符号确定:由对称轴公式x=判断符号;
(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0;
(4)b2-4ac由抛物线与x轴交点的个数确定:
①2个交点,b2-4ac>0;
②1个交点,b2-4ac=0;
③没有交点,b2-4ac<0.
7.如图,抛物线过点,且对称轴为直线,有下列结论:
①;②;③抛物线经过点与点,则;④无论取何值,抛物线都经过同一个点;⑤,其中所有正确的结论是__________.
【答案】②④⑤.
【解析】
【分析】
【详解】
由图象可知,抛物线开口向上,则a>0,
顶点在y轴右侧,则b<0,
抛物线与y轴交于负半轴,则c<0,
∴abc>0,故①错误;
∵抛物线y=ax2+bx+c过点(﹣1,0),且对称轴为直线x=1,
∴抛物线y=ax2+bx+c过点(3,0),
∴当x=3时,y=9a+3b+c=0,
∵a>0,
∴10a+3b+c>0,故②正确;
∵对称轴为x=1,且开口向上,
∴离对称轴水平距离越大,函数值越大,
∴y1<y2,故③错误;
当x=﹣时,y=a?(﹣)2+b?(﹣)+c=,
∵当x=﹣1时,y=a﹣b+c=0,
∴当x=﹣时,y=a?(﹣)2+b?(﹣)+c=0,
即无论a,b,c取何值,抛物线都经过同一个点(﹣,0),故④正确;
x=m对应的函数值为y=am2+bm+c,
x=1对应的函数值为y=a+b+c,
又∵x=1时函数取得最小值,
∴am2+bm+c≥a+b+c,即am2+bm≥a+b,
∵b=﹣2a,
∴am2+bm+a≥0,故⑤正确;
故答案为②④⑤.
8.如图,二次函数的图象与轴交于,对称轴为直线,与轴的交点在和之间(不包括这两个点),下列结论:①当时,;②;③当时,;④.其中正确的结论的序号是___________.
【答案】①②③
【解析】
【分析】
利用抛物线的对称性得到抛物线与x轴的另一个交点坐标为(3,0),利用函数图象得到在x轴上方所对应的自变量的范围,从而可对①进行判断;利用x=-1,y=0,得到b=-2a,c=-3a,而2<c<3,所以2<-3a<3,则可利用不等式的性质可对②进行判断;根据二次函数的性质得到二次函数的最大值为a+b+c,则a+b+c>mx2+bm+c(m≠1),于是可对③进行判断;利用b=-2a,c=-3a可对④进行判断.
【详解】
解:∵抛物线与x轴交于A(-1,0),对称轴为直线x=1,
∴抛物线与x轴的另一个交点坐标为(3,0),
∵抛物线开口向下,
∴当-1<x<3,y>0,所以①正确;
∵抛物线与x轴交于A(-1,0),对称轴为直线x=1,
∴a-b+c=0,,
∴b=-2a,c=-3a,
∵抛物线与y轴的交点坐标为(0,c),
而抛物线与y轴的交点B在(0,2)和(0,3)之间(不包括这两个点),
∴2<c<3,
∴2<-3a<3,
∴-1<a<,所以②正确;
∵抛物线的对称轴为直线x=1,
∴二次函数的最大值为a+b+c,
∴a+b+c>mx2+bm+c(m≠1)
∴a+b>m(am+b)(m≠1),所以③正确;
∵b=-2a,c=-3a,
∴b2-4ac=9a2-4a?(-3a)=21a2,所以④错误.
故答案为:①②③.
【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右.常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
9.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点,有下列结论:
①abc0;
②a﹣2b+4c=0;
③25a﹣10b+4c=0;
④3b+2c0;
⑤a﹣b≥m(am﹣b);
其中所有正确的结论是______.(填写正确结论的序号)
【答案】③④⑤
【解析】
【分析】
根据抛物线的开口方向、对称轴、与y轴的交点判定系数符号,及运用一些特殊点解答问题.
【详解】
由抛物线的开口向下可得:a<0,
根据抛物线的对称轴在y轴左边可得:a,b同号,所以b<0,
根据抛物线与y轴的交点在正半轴可得:c>0,
∴abc>0,故①错误;
∵抛物线过点过点,
∴,
∴a+2b+4c=0,故②错误;
∵抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点,
∴抛物线与x轴的另一个交点坐标为(,0),
当x=时,y=0,即,
整理得:25a﹣10b+4c=0,故③正确;
∵b=2a,a+b+c<0,
∴b+b+c<0,
即3b+2c<0,故④正确;
∵x=﹣1时,函数值最大,
∴a﹣b+cm2a﹣mb+c,
∴a﹣bm(am﹣b),所以⑤正确;
故答案为:③④⑤.
【点评】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线的对称性和抛物线上的点的坐标满足抛物线的解析式.
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)