21.4.2 实物型抛物线及运动中的抛物线问题(重点练)原卷+解析-2020-2021学年(九上)十分钟同步课堂练(沪科版)

文档属性

名称 21.4.2 实物型抛物线及运动中的抛物线问题(重点练)原卷+解析-2020-2021学年(九上)十分钟同步课堂练(沪科版)
格式 zip
文件大小 3.4MB
资源类型 试卷
版本资源 沪科版
科目 数学
更新时间 2020-08-07 21:33:24

文档简介

中小学教育资源及组卷应用平台
中小学教育资源及组卷应用平台
(
21.4第2课时实物型抛物线及运动中的抛物线问题(重点练)
)
1.从地面竖直向上抛出一小球,小球的高度(单位:)与小球运动时间(单位:)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度时,.其中正确的是(
)
A.①④
B.①②
C.②③④
D.②③
【答案】D
【解析】
【分析】
根据函数的图象中的信息判断即可.
【详解】
①由图象知小球在空中达到的最大高度是;故①错误;
②小球抛出3秒后,速度越来越快;故②正确;
③小球抛出3秒时达到最高点即速度为0;故③正确;
④设函数解析式为:,
把代入得,解得,
∴函数解析式为,
把代入解析式得,,
解得:或,
∴小球的高度时,或,故④错误;
故选D.
【点评】本题考查了二次函数的应用,解此题的关键是正确的理解题意
2.如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm,动点P从点A开始沿边AB向B以1cm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以2cm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过( )秒,四边形APQC的面积最小.
A.1
B.2
C.3
D.4
【答案】C
【解析】
【分析】
根据等量关系“四边形APQC的面积=三角形ABC的面积-三角形PBQ的面积”列出函数关系求最小值.
【详解】
解:设P、Q同时出发后经过的时间为ts,四边形APQC的面积为Scm2,则有:
S=S△ABC-S△PBQ
=
×12×6-
(6-t)×2t
=t2-6t+36
=(t-3)2+27.
∴当t=3s时,S取得最小值.
故选C.
【点评】本题考查了函数关系式的求法以及最值的求法,解题的关键是根据题意列出函数关系式,并根据二次函数的性质求出最值.
3.如图,在直角坐标系xOy中有一梯形ABCO,顶点C在x正半轴上,A、B两点在第一象限;且AB∥CO,AO=BC=2,AB=3,OC=5.点P在x轴上,从点(﹣2,0)出发,以每秒1个单位长度的速度沿x轴向正方向运动;同时,过点P作直线l,使直线l和x轴向正方向夹角为30°.设点P运动了t秒,直线l扫过梯形ABCO的面积为S扫.
(1)求A、B两点的坐标;
(2)当t=2秒时,求S扫的值;
(3)求S扫与t的函数关系式,并求出直线l扫过梯形ABCO面积的时点P的坐标.
【答案】(1)(1,),(4,);(2);(3);P的坐标为(5﹣2,0).
【解析】
【分析】
(1)两底的差的一半就是A的横坐标;过A、B作x轴的垂线,在构建的直角三角形中根据OA的长及两底的差便可求出梯形的高即A点的纵坐标.得出A点坐标后向右平移3个单位就是B点的坐标.
(2)当t=2时,P、O两点重合,如果设直线l与AB的交点为D,那么AD=2,而AD边上的高就是A点的纵坐标,由此可求出△ADO的面积及直线l扫过的面积.
(3)本题要分三种情况进行讨论:
①当P在原点左侧,即当0≤t<2时,重合部分是个三角形,如果设直线l与AO,AB分别交于E,F,可根据△AEF∽△AOD,用相似比求出其面积.即可得出S,t的函数关系式.
②当P在O点右侧(包括和O重合),而F点在B点左侧时,即当2≤t<3时,扫过部分是个梯形,可根据梯形的面积计算方法即可得出直线l扫过部分的面积.也就能得出S,t的函数关系式.
③当P点在C点左侧(包括和C点重合),F点在B点右侧(包括和B点重合),即当3≤t≤7时,扫过部分是个五边形,可用梯形ABCO的面积减去△MPC的面积来得出S,t的函数关系式.
【详解】
(1)过A作AD⊥OC于D,过B作BE⊥OC于E,则ADEB是矩形.
∵ADEB是矩形,∴AD=BE=3.
∵AO=BC,∴△AOD≌△BCE,∴OD=CE=(OC-AB)÷2=1.
∵AO=2,∴AD==,∴A(1,).
∵OE=OD+DE=1+3=4,BE=AD=,∴B(4,).
∵BC=2EC,∴∠EBC=30°,∴∠OCB=60°.
(2)当t=2时,P、O两点重合,如果设直线l与AB的交点为D,那么AD=2,而AD边上的高就是A点的纵坐标,∴S扫==.
(3)分三种情况讨论:①当0≤t<2时,如图1,△AEF∽△AOD,,∴S扫t2;
②当2≤t<3时,如图2,S扫=S△AOD+S□DOPF(t﹣2),∴S扫;
③当3≤t≤7时,如图3,过B作直线EB∥直线l交OC于E.
∵∠BEC=30°,∠OCB=60°,∴∠CBE=90°,∴EC=2BC=4,∴S△CEB=,CP=7-t.
∵MP∥BE,∴,∴S△CPM=,∴S扫=4S△CPM=4,∴S扫t2
综上所述:

∵t2,∴t2﹣14t+41=0,t1=7﹣2,t2=7+27(舍),∴P的坐标为(5﹣2,0).
【点评】本题考查了梯形的性质,相似三角形的判定和性质,二次函数的综合应用等知识点.主要考查了学生分类讨论和数形结合的数学思想方法.
4.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.
(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)
(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;
(3)若球一定能越过球网,又不出边界,求h的取值范围.
【答案】(1)y=(x-6)2+2.6
(2)球能越过网;球会过界
(3)h≥
【解析】
【分析】
【详解】
试题分析:(1)利用h=2.6将点(0,2),代入解析式求出即可;
(2)利用当x=9时,y=﹣(x﹣6)2+2.6=2.45,当y=0时,,分别得出即可;
(3)根据当球正好过点(18,0)时,抛物线y=a(x﹣6)2+h还过点(0,2),以及当球刚能过网,此时函数解析式过(9,2.43),抛物线y=a(x﹣6)2+h还过点(0,2)时分别得出h的取值范围,即可得出答案.
试题解析:解:(1)∵h=2.6,球从O点正上方2m的A处发出,
∴抛物线y=a(x﹣6)2+h过点(0,2),
∴2=a(0﹣6)2+2.6,
解得:a=﹣,
故y与x的关系式为:y=﹣(x﹣6)2+2.6,
(2)当x=9时,y=﹣(x﹣6)2+2.6=2.45>2.43,
所以球能过球网;
当y=0时,,
解得:x1=6+2>18,x2=6﹣2(舍去)
故会出界;
(3)当球正好过点(18,0)时,抛物线y=a(x﹣6)2+h还过点(0,2),代入解析式得:

解得:,
此时二次函数解析式为:y=﹣(x﹣6)2+,
此时球若不出边界h≥,
当球刚能过网,此时函数解析式过(9,2.43),抛物线y=a(x﹣6)2+h还过点(0,2),代入解析式得:
解得:,
此时球要过网h≥
故若球一定能越过球网,又不出边界,h的取值范围是:h≥.
【点评】二次函数的应用
5.市政府大楼前广场有一喷水池,水从地面喷出,喷出水的路径是一条抛物线.如果以水平地面为x轴,建立如图所示的平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分.则水喷出的最大高度是____米.
【答案】4
【解析】
【分析】
根据题意可以得到喷水的最大高度就是水在空中划出的抛物线的顶点坐标的纵坐标,利用配方法或公式法求得其顶点坐标的纵坐标即为本题的答案.
【详解】
水在空中划出的曲线是抛物线,
喷水的最大高度就是水在空中划出的抛物线的顶点坐标的纵坐标,

顶点坐标为:,
喷水的最大高度为米.
故答案为:.
【点评】本题考查了二次函数的应用,解决此类问题的关键是从实际问题中整理出函数模型,利用函数的知识解决实际问题.
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
1.从地面竖直向上抛出一小球,小球的高度(单位:)与小球运动时间(单位:)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度时,.其中正确的是(
)
A.①④
B.①②
C.②③④
D.②③
2.如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm,动点P从点A开始沿边AB向B以1cm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以2cm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过( )秒,四边形APQC的面积最小.
A.1
B.2
C.3
D.4
3.如图,在直角坐标系xOy中有一梯形ABCO,顶点C在x正半轴上,A、B两点在第一象限;且AB∥CO,AO=BC=2,AB=3,OC=5.点P在x轴上,从点(﹣2,0)出发,以每秒1个单位长度的速度沿x轴向正方向运动;同时,过点P作直线l,使直线l和x轴向正方向夹角为30°.设点P运动了t秒,直线l扫过梯形ABCO的面积为S扫.
(1)求A、B两点的坐标;
(2)当t=2秒时,求S扫的值;
(3)求S扫与t的函数关系式,并求出直线l扫过梯形ABCO面积的时点P的坐标.
4.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.
(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)
(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;
(3)若球一定能越过球网,又不出边界,求h的取值范围.
5.市政府大楼前广场有一喷水池,水从地面喷出,喷出水的路径是一条抛物线.如果以水平地面为x轴,建立如图所示的平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分.则水喷出的最大高度是____米.
原创精品资源学科网独家享有版权,侵权必究!
21世纪教育网(www.21cnjy.com)