(共16张PPT)
《统计初步》知识框图:
如何描述一组数据的情况?
从特征数上描述
从整体分布上描述
描述其集中趋势
描述其波动大小
平均数
众 数
中位数
方 差
标准差
描述其在整体上的分布规律
频率分布
复习
如何用样本情况估计总体情况?
提出总体、个体、样本、样本容量等概念.
介绍如何用样本平均数去估计总体平均数.
《统计初步》知识框架图:
数理统计所要解决的问题是如何根据样本来推断总体,第一个问题就是如何采集样本,只有合理科学地采集样本,然后才能作出客观的统计推断.
问题的提出
新课
一个口袋里有6个球,依次逐个取出2个球.
简单随机抽样
(1)第一次抽取时,其中任意一个球被抽到的概率是多少 第二次抽取时,其中任意一个球被抽到的概率是多少 …
(2)把依次逐个取出2个球看成一个完整的过程,问每个球被抽到的概率是否相等
引例
注意以下几点:
(1)它要求被抽取样本的总体的个体数有限;
(2)它是从总体中逐个进行抽取;
(3)它是一种不放回抽样;
(4)它是一种等概率抽样.
一般地,设一个总体的个体数为N,如果通过逐个不放回地抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.
简单随机抽样
简单随机抽样是在特定总体中抽取样本,总体中每一个体被抽取的可能性是等同的,而且任何个体之间彼此被抽取的机会是独立的.如果用从个体数为N的总体中抽取一个容量为n的样本,那么每个个体被抽取的概卒等于 。
N
n
说一说
1、抽签法(抓阄法)
先将总体中的所有个体(共N个)编号(号码可以从1到N),并把号码写在形状、大小相同的号签上( 号签可以用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌。抽签时,每次从中抽出1 个号签,连续抽取n次,就得到一个容量为n的样本。对个体编号时,也可以利用已有的编号.例如学生的学号,座位号等。
抽签法的步骤:
1、把总体中的N个个体编号;
2、 把号码写在号签上,将号签放在一个容器中搅拌均匀;
3、每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.
2、用随机数表法进行抽取
(1)随机数表是统计工作者用计算机生成的随机数,并保证表中的每个位置上的数字是等可能出现的.
(2)用随机数表进行抽样的步骤:将总体中个体编号;选定开始的数字;获取样本号码.
(3)用随机数表抽取样本,可以任选一个数作为开始,读数的方向可以向左,也可以向右、向上、向下等等.因此并不是唯一的.
(4)由于随机数表是等概率的,因此利用随机数表抽取样本保证了被抽取个体的概率是相等的.
某班有60名学生,要从中随机抽取10人参加某项活动,如何采用简单随机抽样的方法抽取样本?写出抽样过程.
例题
简单随机抽样一般采用两种方法:抽签法和随机数表法.
解法1:(抽签法)将60名学生编号为01,02,…,60,并做好大小、形状相同的号签,分别写上这60个数,将这些号签放在一起,进行均匀搅拌,接着连续不放回地抽取10个号签,这10个号签对应的人为所选.
解法2:(随机数表法)将60名学生编号为00,01,…60,在随机数表中选定一个起始位置,如取第21行第1个数开始,选取10个为34,30,13,55,40,44,22, 26, 04, 33. 这10个号签对应的人为所选..
1. 将全班同学按学号编号,制作相应的卡片号签,放入同一个箱子里均匀搅拌,从中抽出15个号签,就相应的15名学生对看足球比赛的喜爱程度(很喜爱、喜爱、一般、不喜爱、很不喜爱 )进行调查。分析并说明整个抽签过程中每个同学被抽到的概率是相等的。
练习
2. 将全班同学按学号编号,制作相应的卡片号签,放入同一个箱子里均匀搅拌,从中抽出15个号签,就相应的15名学生对看足球比赛的喜爱程度(很喜爱、喜爱、一般、不喜爱、很不喜爱)进行调查.
上述问题中抽取样本的方法用随机数表法来进行!
规则1:从95页表中第3行第11列的两位数开始,依次向下读数,到头后再转向它左面的两位数号码,并向上读数,以此下去,直到取足样本.
规则2:从95页表中第12行第10列的两位数开始,依次向左读数,到头后再转向它下面的两位数号码,并向右读数,以此下去,直到取足样本.
抽签法 随机数表法
2.简单随机抽样的法:
注:随机抽样并不是随意或随便抽取,因为随意或随便抽取都会带有主观或客观的影响因素.
一般地,设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.
1.简单随机抽样的概念
小结