【数学】3.2.1《古典概型》课件2(新人教b版必修3)

文档属性

名称 【数学】3.2.1《古典概型》课件2(新人教b版必修3)
格式 rar
文件大小 74.0KB
资源类型 教案
版本资源 人教新课标B版
科目 数学
更新时间 2011-07-19 17:18:32

图片预览

文档简介

(共20张PPT)
3.2.1 古典概型
问题提出
1.两个事件之间的关系包括包含事件、相等事件、互斥事件、对立事件,事件之间的运算包括和事件、积事件,这些概念的含义分别如何?
若事件A发生时事件B一定发生,则 .
若事件A发生时事件B一定发生,反之亦
然,则A=B.若事件A与事件B不同时发
生,则A与B互斥.若事件A与事件B有且
只有一个发生,则A与B相互对立.
2.概率的加法公式是什么?对立事件的概率有什么关系?
若事件A与事件B互斥,则 P(A+B)=P(A)+P(B).
若事件A与事件B相互对立,则 P(A)+P(B)=1.
3.通过试验和观察的方法,可以得到一些事件的概率估计,但这种方法耗时多,操作不方便,并且有些事件是难以组织试验的.因此,我们希望在某些特殊条件下,有一个计算事件概率的通用方法.
思考1:抛掷两枚质地均匀的硬币,有哪几种可能结果?连续抛掷三枚质地均匀的硬币,有哪几种可能结果?
(正,正),(正,反), (反,正),(反,反);
(正,正,正),(正,正,反),(正,反,正),(反,正,正),
(正,反,反),(反,正,反),(反,反,正),(反,反,反).
知识探究(一):基本事件
思考2:上述试验中的每一个结果都是随机事件,我们把这类事件称为基本事件.在一次试验中,任何两个基本事件是什么关系?
互斥关系
思考3:在连续抛掷三枚质地均匀的硬币的试验中,随机事件“出现两次正面和一次反面”,“至少出现两次正面”分别由哪些基本事件组成?
思考4:综上分析,基本事件有哪两个特征?
(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和.
思考5:从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?事件“取到字母a”是哪些基本事件的和?
A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d};
A+B+C.
知识探究(二):古典概型
思考1:抛掷一枚质地均匀的骰子有哪些基本事件?每个基本事件出现的可能性相等吗?
思考2:抛掷一枚质地不均匀的硬币有哪些基本事件?每个基本事件出现的可能性相等吗?
思考3:从所有整数中任取一个数的试验中,其基本事件有多少个?
无数个
思考4:如果一次试验中所有可能出现的基本事件只有有限个(有限性),且每个基本事件出现的可能性相等(等可能性),则具有这两个特点的概率模型称为古典概型. 在射击练习中,“射击一次命中的环数”是古典概型吗?为什么?
不是,因为命中的环数的可能性不相等.
思考5:随机抛掷一枚质地均匀的骰子是古典概型吗?每个基本事件出现的概率是多少?你能根据古典概型和基本事件的概念,检验你的结论的正确性吗?
P(“1点”)= P(“2点”)= P(“3点”)= P(“4点”)=P(“5点”)= P(“6点”)
P(“1点”)+P(“2点”)+ P(“3点”)+ P(“4点”)+P(“5点”)+ P(“6点”)=1.
思考6:一般地,如果一个古典概型共有n个基本事件,那么每个基本事件在一次试验中发生的概率为多少?
思考7:随机抛掷一枚质地均匀的骰子,利用基本事件的概率值和概率加法公式,“出现偶数点”的概率如何计算?“出现不小于2点” 的概率如何计算?
思考8:考察抛掷一枚质地均匀的骰子的基本事件总数,与“出现偶数点”、“出现不小于2点”所包含的基本事件的个数之间的关系,你有什么发现?
P(“出现偶数点”)=“出现偶数点”所包含的基本事件的个数÷基本事件的总数;
P(“出现不小于2点”)=“出现不小于2点”所包含的基本事件的个数÷基本事件的总数.
思考9:一般地,对于古典概型,事件A在一次试验中发生的概率如何计算?
P(A)=事件A所包含的基本事件的个数÷基本事件的总数.
思考10:从集合的观点分析,如果在一次试验中,等可能出现的所有n个基本事件组成全集U,事件A包含的m个基本事件组成子集A,那么事件A发生的概率 P(A)等于什么?特别地,当A=U,A=Ф时,P(A)等于什么?
理论迁移
例1 单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?
0.25
例2 同时掷两个骰子,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是7的结果有多少种?
(3)向上的点数之和是5的概率是多少?
36;6;1/6.
例3 假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?
0.00001
例4 某种饮料每箱装6听,如果其中有2听不合格,质检人员依次不放回从某箱中随机抽出2听,求检测出不合格产品的概率.
8÷30+8÷30+2÷30=0.6
小结作业
1.基本事件是一次试验中所有可能出现的最小事件,且这些事件彼此互斥.试验中的事件A可以是基本事件,也可以是有几个基本事件组合而成的.
2.有限性和等可能性是古典概型的两个本质特点,概率计算公式P(A)=事件A所包含的基本事件的个数÷基本事件的总数,只对古典概型适用
3.有限性和等可能性是古典概型的两个本质特点,概率计算公式P(A)=事件A所包含的基本事件的个数÷基本事件的总数,只对古典概型适用
作业:
P107 习题3-2 A组 : 1,2,3,4.