23.1 图形的旋转(基础练)原卷+解析-2020-2021学年(九上)十分钟同步课堂练(人教版)

文档属性

名称 23.1 图形的旋转(基础练)原卷+解析-2020-2021学年(九上)十分钟同步课堂练(人教版)
格式 zip
文件大小 2.4MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2020-08-11 21:51:15

文档简介

中小学教育资源及组卷应用平台
23.1图形的旋转(基础练)
1.下列图形中,不能通过其中一个四边形平移得到的是(  )
A.
B.
C.
D.
【答案】D
【解析】【详解】
解:A、能通过其中一个四边形平移得到,不符合题意;
B、能通过其中一个四边形平移得到,不符合题意;
C、能通过其中一个四边形平移得到,不符合题意;
D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.
故选D.
2.如图,△ODC是由△OAB绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,则∠A的度数为(  )
A.70°
B.75°
C.60°
D.65°
【答案】B
【解析】【分析】
由旋转的性质知∠AOD=30°,OA=OD,根据等腰三角形的性质及内角和定理可得答案.
【详解】
由题意得:∠AOD=30°,OA=OD,∴∠A=∠ADO75°.
故选B.
【点评】本题考查了旋转的性质,熟练掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等是解题的关键.
3.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是(

A.①
B.②
C.③
D.④
【答案】B
【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。因此,通过观察发现,当涂黑②时,所形成的图形关于点A中心对称。故选B。
4.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A'OB',若∠AOB=15°,则∠AOB'的度数是(

A.25°
B.30°
C.35°
D.40°
【答案】B
【解析】【分析】
【详解】
∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,
∴∠A′OA=45°,∠AOB=∠A′OB′=15°,
∴∠AOB′=∠A′OA-∠A′OB′=45°-15°=30°,
故选B.
5.如图,将绕点A按顺时针旋转一定角度得到,点B的对应点D恰好落在BC边上若,,则CD的长为  
A.
B.
C.
D.1
【答案】D
【解析】【分析】
解直角三角形求出AB,再求出CD,然后根据旋转的性质可得AB=AD,然后判断出△ABD是等边三角形,根据等边三角形的三条边都相等可得BD=AB,然后根据CD=BC-BD计算即可得解.
【详解】
∵∠B=60°,
∴∠C=90°-60°=30°,
∵AC=,
∴AB=AC?tan30°=×=1,
∴BC=2AB=2,
由旋转的性质得,AB=AD,
∴△ABD是等边三角形,
∴BD=AB=1,
∴CD=BC-BD=2-1=1.
故选D.
【点评】本题考查了旋转的性质,等边三角形的判定与性质,解直角三角形,熟记性质并判断出△ABD是等边三角形是解题的关键.
6.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为
A.(3,4)
B.(﹣4,3)
C.(﹣3,4)
D.(4,﹣3)
【答案】C
【解析】分析:如图,OA=3,PA=4,
∵线段OP绕点O逆时针旋转90°到OP′位置,
∴OA旋转到x轴负半轴OA′的位置,∠P′A′O=∠PAO=90°,P′A′=PA=4。
∴P′点的坐标为(﹣3,4)。故选C。
7.如图,在正方形网格中,将△ABC绕点A旋转后得到△ADE,则下列旋转方式中,符合题意的是(

A.逆时针旋转90°
B.顺时针旋转90°
C.逆时针旋转45°
D.顺时针旋转45°
【答案】A
【解析】【分析】
根据给出的图形先确定出旋转中心,再确定出旋转的方向和度数即可求出答案.
【详解】
根据图形可知:将△ABC绕点A逆时针旋转90°可得到△ADE,
故选A.
【点评】本题主要考查旋转的性质,在解题时,一定要明确三个要素:旋转中心、旋转方向、旋转角度.
8.如图,在方格纸中,△ABC经过变换得到△DEF,正确的变换是(

A.把△ABC绕点C逆时针方向旋转90°,再向下平移2格
B.把△ABC绕点C顺时针方向旋转90°,再向下平移5格
C.把△ABC向下平移4格,再绕点C逆时针方向旋转180°
D.把△ABC向下平移5格,再绕点C顺时针方向旋转180°
【答案】B
【解析】几何变换的类型.
【分析】根据图象,△ABC绕点C顺时针方向旋转90°,再向下平移5格即可与△DEF重合.故选B.
9.在平面直角坐标系中,四边形ABCD的位置如图所示,解答下列问题:
(1)将四边形ABCD先向左平移4个单位,再向下平移6个单位,得到四边形A1B1C1D1,画出平移后的四边形A1B1C1D1;
(2)将四边形A1B1C1D1绕点A1逆时针旋转90°,得到四边形A1B2C2D2,画出旋转后的四边形A1B2C2D2,并写出点C2的坐标.
【答案】解:(1)四边形A1B1C1D1如图所示;
(2)四边形A1B2C2D2如图所示,C2(1,﹣2).
【解析】试题分析:(1)根据网格结构找出点A、B、C、D平移后的对应点A1、B1、C1、D1的位置,然后顺次连接即可.
(2)根据网格结构找出B1、C1、D1绕点A1逆时针旋转90°的对应点B2、C2、D2的位置,然后顺次连接即可,再根据平面直角坐标系写出点C2的坐标.
10.如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.
(1)证明:⊿ABC

⊿DCB;
(2)求∠AEB的大小.
(3)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.
【答案】(1)详见解析;(2)60°
(3)60°
【解析】【分析】
(1)利用题中信息可得:都为等边三角形,找出它们之间的等量关系去证明全等;
(2)根据等边三角形和外角的性质,可求;
(3)方法同上,只是,此时已不是外角,但仍可用外角和内角的关系解答.
【详解】
证明:(1)
,且都为等边三角形,
,
,
为等边三角形,
,
在和中,
,
;
(2)如图所示:
和都是等边三角形,
且点O是线段的中点,
,∠,

又,

同理,
.
(3)如图所示:
都是等边三角形,




又,,
【点评】本题考查旋转的性质,
三角形内角和定理,
等边三角形的性质.
21世纪教育网
www.21cnjy.com
精品试卷·第
2

(共
2
页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
23.1图形的旋转(基础练)
1.下列图形中,不能通过其中一个四边形平移得到的是(  )
A.
B.
C.
D.
2.如图,△ODC是由△OAB绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,则∠A的度数为(  )
A.70°
B.75°
C.60°
D.65°
3.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是(

A.①
B.②
C.③
D.④
4.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A'OB',若∠AOB=15°,则∠AOB'的度数是(

A.25°
B.30°
C.35°
D.40°
5.如图,将绕点A按顺时针旋转一定角度得到,点B的对应点D恰好落在BC边上若,,则CD的长为  
A.
B.
C.
D.1
6.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为
A.(3,4)
B.(﹣4,3)
C.(﹣3,4)
D.(4,﹣3)
7.如图,在正方形网格中,将△ABC绕点A旋转后得到△ADE,则下列旋转方式中,符合题意的是(

A.逆时针旋转90°
B.顺时针旋转90°
C.逆时针旋转45°
D.顺时针旋转45°
8.如图,在方格纸中,△ABC经过变换得到△DEF,正确的变换是(

A.把△ABC绕点C逆时针方向旋转90°,再向下平移2格
B.把△ABC绕点C顺时针方向旋转90°,再向下平移5格
C.把△ABC向下平移4格,再绕点C逆时针方向旋转180°
D.把△ABC向下平移5格,再绕点C顺时针方向旋转180°
9.在平面直角坐标系中,四边形ABCD的位置如图所示,解答下列问题:
(1)将四边形ABCD先向左平移4个单位,再向下平移6个单位,得到四边形A1B1C1D1,画出平移后的四边形A1B1C1D1;
(2)将四边形A1B1C1D1绕点A1逆时针旋转90°,得到四边形A1B2C2D2,画出旋转后的四边形A1B2C2D2,并写出点C2的坐标.
10.如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.
(1)证明:⊿ABC

⊿DCB;
(2)求∠AEB的大小.
(3)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.
21世纪教育网
www.21cnjy.com
精品试卷·第
2

(共
2
页)
21世纪教育网(www.21cnjy.com)