2.3.2 平面与平面垂直的判定
一、基础过关
1.过两点与一个已知平面垂直的平面
( )
A.有且只有一个
B.有无数个
C.一个或无数个
D.可能不存在
2.不能肯定两个平面一定垂直的情况是
( )
A.两个平面相交,所成二面角是直二面角
B.一个平面经过另一个平面的一条垂线
C.一个平面垂直于另一个平面内的一条直线
D.平面α内的直线a与平面β内的直线b是垂直的
3.设有直线m、n和平面α、β,则下列结论中正确的是
( )
①若m∥n,n⊥β,m?α,则α⊥β;
②若m⊥n,α∩β=m,n?α,则α⊥β;
③若m⊥α,n⊥β,m⊥n,则α⊥β.
A.①②
B.①③
C.②③
D.①②③
4.设l是直线,α,β是两个不同的平面,下列结论中正确的是
( )
A.若l∥α,l∥β,则α∥β
B.若l∥α,l⊥β,则α⊥β
C.若α⊥β,l⊥α,则l⊥β
D.若α⊥β,l∥α,则l⊥β
5.过正方形ABCD的顶点A作线段AP⊥平面ABCD,且AP=AB,则平面ABP与平面CDP所成的二面角的度数是________.
6.如图所示,已知PA⊥矩形ABCD所在的平面,图中互相垂直的平面有________对.
7.在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.求证:平面EFG⊥平面PDC.
8.
如图所示,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=.
(1)证明:平面PBE⊥平面PAB;
(2)求二面角A—BE—P的大小.
二、能力提升
9.在边长为1的菱形ABCD中,∠ABC=60°,把菱形沿对角线AC折起,使折起后BD=,则二面角B-AC-D的余弦值为
( )
A.
B.
C.
D.
10.在正四面体P-ABC中,D、E、F分别是AB、BC、CA的中点,下面四个结论中不成立的是
( )
A.BC∥面PDF
B.DF⊥面PAE
C.面PDF⊥面ABC
D.面PAE⊥面ABC
11.如图,在直三棱柱ABC—A1B1C1中,E、F分别是A1B、A1C的中点,点D在B1C1上,A1D⊥B1C.
求证:(1)EF∥平面ABC;
(2)平面A1FD⊥平面BB1C1C.
12.如图,在三棱锥P—ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.
(1)求证:BC⊥平面PAC.
(2)是否存在点E使得二面角A—DE—P为直二面角?并说明理由.
三、探究与拓展
13.如图所示,三棱锥P—ABC中,D是AC的中点,PA=PB=PC=,AC=2,AB=,BC=.
(1)求证:PD⊥平面ABC;
(2)求二面角P—AB—C的正切值.
答案
1.C 2.D 3.B 4.B
5.45°
6.5
7.证明 因为MA⊥平面ABCD,PD∥MA,所以PD⊥平面ABCD.
又BC?平面ABCD,所以PD⊥BC.
因为四边形ABCD为正方形,
所以BC⊥DC.
又PD∩DC=D,所以BC⊥平面PDC.
在△PBC中,因为G、F分别为PB、PC的中点,
所以GF∥BC,所以GF⊥平面PDC.
又GF?平面EFG,
所以平面EFG⊥平面PDC.
8.(1)证明 如图所示,连接BD,由ABCD是菱形且∠BCD=60°知,
△BCD是等边三角形.
因为E是CD的中点,所以BE⊥CD.
又AB∥CD,所以BE⊥AB.
又因为PA⊥平面ABCD,
BE?平面ABCD,
所以PA⊥BE.而PA∩AB=A,
因此BE⊥平面PAB.
又BE?平面PBE,
所以平面PBE⊥平面PAB.
(2)解 由(1)知,BE⊥平面PAB,PB?平面PAB,
所以PB⊥BE.又AB⊥BE,所以∠PBA是二面角A—BE—P的平面角.
在Rt△PAB中,tan∠PBA==,则∠PBA=60°.
故二面角A—BE—P的大小是60°.
9.B
10.C
11.证明 (1)由E、F分别是A1B、A1C的中点知EF∥BC.
因为EF?平面ABC,BC?平面ABC.
所以EF∥平面ABC.
(2)由三棱柱ABC—A1B1C1为直三棱柱知CC1⊥平面A1B1C1.又A1D?平面A1B1C1,故CC1⊥A1D.
又因为A1D⊥B1C,CC1∩B1C=C,故A1D⊥平面BB1C1C,又A1D?平面A1FD,所以平面A1FD⊥平面BB1C1C.
12.(1)证明 ∵PA⊥底面ABC,∴PA⊥BC.又∠BCA=90°,∴AC⊥BC.
又∵AC∩PA=A,∴BC⊥平面PAC.
(2)解 ∵DE∥BC,又由(1)知,BC⊥平面PAC,∴DE⊥平面PAC.
又∵AE?平面PAC,PE?平面PAC,
∴DE⊥AE,DE⊥PE.
∴∠AEP为二面角A—DE—P的平面角.
∵PA⊥底面ABC,∴PA⊥AC,
∴∠PAC=90°.
∴在棱PC上存在一点E,
使得AE⊥PC.这时∠AEP=90°,
故存在点E,使得二面角A—DE—P为直二面角.
13.(1)证明 连接BD,
∵D是AC的中点,PA=PC=,
∴PD⊥AC.
∵AC=2,AB=,BC=,
∴AB2+BC2=AC2.
∴∠ABC=90°,即AB⊥BC.
∴BD=AC==AD.
∵PD2=PA2-AD2=3,PB=,
∴PD2+BD2=PB2.∴PD⊥BD.
∵AC∩BD=D,∴PD⊥平面ABC.
(2)解 取AB的中点E,连接DE、PE,由E为AB的中点知DE∥BC,
∵AB⊥BC,∴AB⊥DE.
∵PD⊥平面ABC,∴PD⊥AB.
又AB⊥DE,DE∩PD=D,∴AB⊥平面PDE,∴PE⊥AB.
∴∠PED是二面角P—AB—C的平面角.
在△PED中,DE=BC=,PD=,∠PDE=90°,
∴tan∠PED==.
∴二面角P—AB—C的正切值为.§2.2 直线、平面平行的判定及其性质
2.2.1 直线与平面平行的判定
一、基础过关
1.直线m∥平面α,直线n∥m,则
( )
A.n∥α
B.n与α相交
C.n?α
D.n∥α或n?α
2.棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在的平面的位置关系是
( )
A.平行
B.相交
C.平行或相交
D.不相交
3.已知a,b是两条相交直线,a∥α,则b与α的位置关系是
( )
A.b∥α
B.b与α相交
C.b?α
D.b∥α或b与α相交
4.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是
( )
A.l∥α
B.l⊥α
C.l与α相交但不垂直
D.l∥α或l?α
5.
如图,在长方体ABCD-A1B1C1D1的面中:
(1)与直线AB平行的平面是______;
(2)与直线AA1平行的平面是______;
(3)与直线AD平行的平面是______.
6.已知不重合的直线a,b和平面α.
①若a∥α,b?α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b?α,则a∥α;④若a∥b,a∥α,则b∥α或b?α,其中正确命题的个数是________.
7.在正方体ABCD-A1B1C1D1中,E为DD1的中点,求证:BD1∥平面AEC.
8.
如图,四棱锥A—DBCE中,O为底面正方形DBCE对角线的交点,F为AE的中点.求证:AB∥平面DCF.
二、能力提升
9.在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=EF∶FB=1∶3,则对角线AC和平面DEF的位置关系是
( )
A.平行
B.相交
C.在内
D.不能确定
10.过直线l外两点,作与l平行的平面,则这样的平面
( )
A.不存在
B.只能作出一个
C.能作出无数个
D.以上都有可能
11.过平行六面体ABCD-A1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有________条.
12.
如图,在平行四边形ABCD中,E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,F为线段A′C的中点.求证:BF∥平面A′DE.
三、探究与拓展
13.
正方形ABCD与正方形ABEF所在平面相交于AB,在AE,BD上各有一点P,Q,且AP=DQ.求证:PQ∥平面BCE.(用两种方法证明)
答案
1.D 2.B 3.D 4.D
5.(1)平面A1C1和平面DC1 (2)平面BC1和平面DC1 (3)平面B1C和平面A1C1
6.1
7.证明 如图,连接BD交AC于F,连接EF.
因为F为正方形ABCD对角线的交点,所以F为AC、BD的中点.
在三角形DD1B中,E、F分别为DD1、DB的中点,所以EF∥D1B.
又EF?平面AEC,BD1?平面AEC,所以BD1∥平面AEC.
8.证明 连接OF,
∵O为正方形DBCE对角线的交点,∴BO=OE,
又AF=FE,
∴AB∥OF,
?AB∥平面DCF.
9.A 10.D 11.12
12.证明 取A′D的中点G,连接GF,GE,
由条件易知FG∥CD,FG=CD,BE∥CD,BE=CD,
所以FG∥BE,FG=BE,故四边形BEGF为平行四边形,
所以BF∥EG.因为EG?平面A′DE,
BF?平面A′DE,
所以BF∥平面A′DE.
13.证明 如图所示,连接AQ并延长交BC于K,连接EK.
∵KB∥AD,∴=.
∵AP=DQ,AE=BD,
∴BQ=PE.
∴=.∴=.∴PQ∥EK.
又PQ?平面BCE,EK?平面BCE,
∴PQ∥平面BCE.2.2.2 平面与平面平行的判定
一、基础过关
1.直线l∥平面α,直线m∥平面α,直线l与m相交于点P,且l与m确定的平面为β,则α与β的位置关系是
( )
A.相交
B.平行
C.异面
D.不确定
2.平面α与平面β平行的条件可以是
( )
A.α内的一条直线与β平行
B.α内的两条直线与β平行
C.α内的无数条直线与β平行
D.α内的两条相交直线分别与β平行
3.给出下列结论,正确的有
( )
①平行于同一条直线的两个平面平行;
②平行于同一平面的两个平面平行;
③过平面外两点,不能作一个平面与已知平面平行;
④若a,b为异面直线,则过a与b平行的平面只有一个.
A.1个
B.2个
C.3个
D.4个
4.若正n边形的两条对角线分别与面α平行,则这个正n边形所在的平面一定平行于平面α,那么n的取值可能是
( )
A.12
B.8
C.6
D.5
5.已知平面α、β和直线a、b、c,且a∥b∥c,a?α,b、c?β,则α与β的关系是________.
6.有下列几个命题:
①平面α内有无数个点到平面β的距离相等,则α∥β;
②α∩γ=a,α∩β=b,且a∥b(α,β,γ分别表示平面,a,b表示直线),则γ∥β;
③平面α内一个三角形三边分别平行于平面β内的一个三角形的三条边,则α∥β;
④平面α内的一个平行四边形的两边与平面β内的一个平行四边形的两边对应平行,则α∥β.
其中正确的有________.(填序号)
7.如图所示,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF,求证:AE∥平面DCF.
8.
在长方体ABCD—A1B1C1D1中,E、F、E1、F1分别是AB、CD、
A1B1、C1D1的中点.
求证:平面A1EFD1∥平面BCF1E1.
二、能力提升
9.α、β是两个不重合的平面,a、b是两条不同的直线,在下列条件下,可判定α∥β的是
( )
A.α,β都平行于直线a、b
B.α内有三个不共线的点到β的距离相等
C.a,b是α内两条直线,且a∥β,b∥β
D.a、b是两条异面直线,且a∥α,b∥α,a∥β,b∥β
10.
正方体EFGH—E1F1G1H1中,下列四对截面中,彼此平行的一对截面是( )
A.平面E1FG1与平面EGH1
B.平面FHG1与平面F1H1G
C.平面F1H1H与平面FHE1
D.平面E1HG1与平面EH1G
11.
如图所示,在正方体ABCD—A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足________时,有MN∥平面B1BDD1.
12.已知在正方体ABCD—A1B1C1D1中,M、E、F、N分别是A1B1、B1C1、C1D1、D1A1的
中点.
求证:(1)E、F、D、B四点共面;
(2)平面AMN∥平面EFDB.
三、探究与拓展
13.如图所示,B为△ACD所在平面外一点,M、N、G分别为△ABC、△ABD、△BCD的重心.
(1)求证:平面MNG∥平面ACD;
(2)求S△MNG∶S△ADC.
答案
1.B 2.D 3.B 4.D
5.相交或平行
6.③
7.证明 由于AB∥CD,BE∥CF,故平面ABE∥平面DCF.
而直线AE在平面ABE内,根据线面平行的定义,知AE∥平面DCF.
8.证明 ∵E、E1分别是AB、A1B1的中点,∴A1E1∥BE且A1E1=BE.
∴四边形A1EBE1为平行四边形.
∴A1E∥BE1.∵A1E?平面BCF1E1,
BE1?平面BCF1E1.
∴A1E∥平面BCF1E1.
同理A1D1∥平面BCF1E1,
A1E∩A1D1=A1,
∴平面A1EFD1∥平面BCF1E1.
9.D 10.A 11.M∈线段FH
12.证明 (1)∵E、F分别是B1C1、C1D1的中点,∴EF綊B1D1,
∵DD1綊BB1,
∴四边形D1B1BD是平行四边形,
∴D1B1∥BD.
∴EF∥BD,
即EF、BD确定一个平面,故E、F、D、B四点共面.
(2)∵M、N分别是A1B1、A1D1的中点,
∴MN∥D1B1∥EF.
又MN?平面EFDB,
EF?平面EFDB.
∴MN∥平面EFDB.
连接NE,则NE綊A1B1綊AB.
∴四边形NEBA是平行四边形.
∴AN∥BE.又AN?平面EFDB,BE?平面EFDB.∴AN∥平面EFDB.
∵AN、MN都在平面AMN内,且AN∩MN=N,
∴平面AMN∥平面EFDB.
13.(1)证明 连接BM、BN、BG并延长交AC、AD、CD分别于P、F、H.
∵M、N、G分别为△ABC、△ABD、△BCD的重心,则有===2.
连接PF、FH、PH,有MN∥PF.
又PF?平面ACD,MN?平面ACD,
∴MN∥平面ACD.
同理MG∥平面ACD,MG∩MN=M,
∴平面MNG∥平面ACD.
(2)解 由(1)可知==,
∴MG=PH.
又PH=AD,∴MG=AD.
同理NG=AC,MN=CD.
∴△MNG∽△DCA,其相似比为1∶3,
∴S△MNG∶S△ADC=1∶9.2.1.2 空间中直线与直线之间的位置关系
一、基础过关
1.分别在两个平面内的两条直线间的位置关系是
( )
A.异面
B.平行
C.相交
D.以上都有可能
2.若AB∥A′B′,AC∥A′C′,则有
( )
A.∠BAC=∠B′A′C′
B.∠BAC+∠B′A′C′=180°
C.∠BAC=∠B′A′C′或∠BAC+∠B′A′C′=180°
D.∠BAC>∠B′A′C′
3.空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是
( )
A.空间四边形
B.矩形
C.菱形
D.正方形
4.“a、b为异面直线”是指:
①a∩b=?,且aD\∥b;②a?面α,b?面β,且a∩b=?;③a?面α,b?面β,且α∩β=?;④a?面α,b?面α;⑤不存在面α,使a?面α,b?面α成立.
上述结论中,正确的是
( )
A.①④⑤
B.①③④
C.②④
D.①⑤
5.如果两条直线a和b没有公共点,那么a与b的位置关系是________.
6.已知正方体ABCD—A′B′C′D′中:
(1)BC′与CD′所成的角为________;
(2)AD与BC′所成的角为________.
7.如图所示,四边形ABEF和ABCD都是直角梯形,∠BAD=∠FAB=90°,BC綊AD,
BE綊FA,G、H分别为FA、FD的中点.
(1)证明:四边形BCHG是平行四边形;
(2)C、D、F、E四点是否共面?为什么?
8.如图,正方体ABCD-EFGH中,O为侧面ADHE的中心,求:
(1)BE与CG所成的角;
(2)FO与BD所成的角.
二、能力提升
9.如图所示,已知三棱锥A-BCD中,M、N分别为AB、CD的中点,则下列结论正确的是
( )
A.MN≥(AC+BD)
B.MN≤(AC+BD)
C.MN=(AC+BD)
D.MN<(AC+BD)
10.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线( )
A.12对
B.24对
C.36对
D.48对
11.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:
①AB⊥EF;
②AB与CM所成的角为60°;
③EF与MN是异面直线;
④MN∥CD.
以上结论中正确的序号为________.
12.已知A是△BCD平面外的一点,E,F分别是BC,AD的中点,
(1)求证:直线EF与BD是异面直线;
(2)若AC⊥BD,AC=BD,求EF与BD所成的角.
三、探究与拓展
13.已知三棱锥A—BCD中,AB=CD,且直线AB与CD成60°角,点M、N分别是BC、AD的中点,求直线AB和MN所成的角.
答案
1.D 2.C 3.B
4.D 5.平行或异面
6.(1)60° (2)45°
7.(1)证明 由已知FG=GA,FH=HD,
可得GH綊AD.又BC綊AD,
∴GH綊BC,
∴四边形BCHG为平行四边形.
(2)解 由BE綊AF,G为FA中点知,BE綊FG,
∴四边形BEFG为平行四边形,∴EF∥BG.
由(1)知BG綊CH,∴EF∥CH,
∴EF与CH共面.
又D∈FH,∴C、D、F、E四点共面.
8.解 (1)如图,∵CG∥BF,∴∠EBF(或其补角)为异面直线BE与CG所成的角,
又△BEF中,∠EBF=45°,所以BE与CG所成的角为45°.
(2)连接FH,BD,FO,∵HD綊EA,EA綊FB,
∴HD綊FB,
∴四边形HFBD为平行四边形,
∴HF∥BD,
∴∠HFO(或其补角)为异面直线FO与BD所成的角.
连接HA、AF,易得FH=HA=AF,
∴△AFH为等边三角形,
又依题意知O为AH中点,∴∠HFO=30°,即FO与BD所成的角是30°.
9.D 10.B
11.①③
12.(1)证明 假设EF与BD不是异面直线,则EF与BD共面,从而DF与BE共面,即AD与BC共面,所以A、B、C、D在同一平面内,这与A是△BCD平面外的一点相矛盾.故直线EF与BD是异面直线.
(2)解 取CD的中点G,连接EG、FG,则EG∥BD,所以相交直线EF与EG所成的角,即为异面直线EF与BD所成的角.在Rt△EGF中,由EG=FG=AC,求得∠FEG=45°,即异面直线EF与BD所成的角为45°.
13.解 如图,取AC的中点P.
连接PM、PN,
则PM∥AB,且PM=AB,PN∥CD,且PN=CD,
所以∠MPN为直线AB与CD所成的角(或所成角的补角).
则∠MPN=60°或∠MPN=120°,
若∠MPN=60°,因为PM∥AB,
所以∠PMN是AB与MN所成的角(或所成角的补角).
又因AB=CD,所以PM=PN,则△PMN是等边三角形,
所以∠PMN=60°,
即AB与MN所成的角为60°.
若∠MPN=120°,则易知△PMN是等腰三角形.所以∠PMN=30°,
即AB与MN所成的角为30°.
故直线AB和MN所成的角为60°或30°.2.2.4 平面与平面平行的性质
一、基础过关
1.已知平面α∥平面β,过平面α内的一条直线a的平面γ,与平面β相交,交线为直线b,则a、b的位置关系是
( )
A.平行
B.相交
C.异面
D.不确定
2.已知a、b表示直线,α、β表示平面,下列推理正确的是
( )
A.α∩β=a,b?α?a∥b
B.α∩β=a,a∥b?b∥α且b∥β
C.a∥β,b∥β,a?α,b?α?α∥β
D.α∥β,α∩γ=a,β∩γ=b?a∥b
3.
如图所示,P是三角形ABC所在平面外一点,平面α∥平面ABC,α分别交线段PA、PB、PC于A′、B′、C′,若PA′∶AA′=2∶3,则S△A′B′C′∶S△ABC等于
( )
A.2∶25
B.4∶25
C.2∶5
D.4∶5
4.α,β,γ为三个不重合的平面,a,b,c为三条不同的直线,则有下列命题,不正确的是( )
①?a∥b;
②?a∥b;
③?α∥β;
④?α∥β;
⑤?α∥a;
⑥?a∥α.
A.④⑥
B.②③⑥
C.②③⑤⑥
D.②③
5.分别在两个平行平面的两个三角形.(填“相似”“全等”)
(1)若对应顶点的连线共点,那么这两个三角形具有______关系;
(2)若对应顶点的连线互相平行,那么这两个三角形具有________关系.
6.已知平面α∥β∥γ,两条直线l、m分别与平面α、β、γ相交于点A、B、C与D、E、F.已知AB=6,=,则AC=______.
7.如图,在三棱柱ABC-A1B1C1中,M是A1C1的中点,平面AB1M∥平面BC1N,AC∩平面BC1N=N.
求证:N为AC的中点.
8.
如图所示,在底面是平行四边形的四棱锥P-ABCD中,点E在PD上,且PE∶ED=2∶1,在棱PC上是否存在一点F,使BF∥平面AEC?并证明你的结论.
二、能力提升
9.设α∥β,A∈α,B∈β,C是AB的中点,当A、B分别在平面α、β内运动时,得到无数个AB的中点C,那么所有的动点C
( )
A.不共面
B.当且仅当A、B分别在两条直线上移动时才共面
C.当且仅当A、B分别在两条给定的异面直线上移动时才共面
D.不论A、B如何移动,都共面
10.已知平面α∥平面β,P是α,β外一点,过点P的直线m与α,β分别交于点A,C,过点P的直线n与α,β分别交于点B,D,且PA=6,AC=9,PD=8,则BD的长为( )
A.16
B.24或
C.14
D.20
11.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l,m,使得l∥α,l∥β,m∥α,m∥β.其中可以判断两个平面α与β平行的条件有________个.
12.
如图所示,平面α∥平面β,△ABC、△A′B′C′分别在α、β内,线段AA′、BB′、CC′共点于O,O在α、β之间,若AB=2,AC=1,∠BAC=90°,OA∶OA′=3∶2.
求△A′B′C′的面积.
三、探究与拓展
13.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作与截面PBC1平行的截面,能否确定截面的形状?如果能,求出截面的面积.
答案
1.A 2.D 3.B 4.C
5.(1)相似 (2)全等
6.15
7.证明 ∵平面AB1M∥平面BC1N,
平面ACC1A1∩平面AB1M=AM,
平面BC1N∩平面ACC1A1=C1N,
∴C1N∥AM,又AC∥A1C1,
∴四边形ANC1M为平行四边形,
∴AN=C1M=A1C1=AC,
∴N为AC的中点.
8.
解 当F是棱PC的中点时,BF∥平面AEC,
证明如下:
取PE的中点M,连接FM,则FM∥CE,①
由EM=PE=ED,知E是MD的中点,设BD∩AC=O,则O为BD的中点,连接OE,则BM∥OE,②
由①②可知,平面BFM∥平面AEC,又BF?平面BFM,
∴BF∥平面AEC.
9.D 10.B
11.2
12.解 相交直线AA′,BB′所在平面和两平行平面α、β分别相交于AB、A′B′,
由面面平行的性质定理可得AB∥A′B′.
同理相交直线BB′、CC′确定的平面和平行平面α、β分别相交于BC、B′C′,从而BC∥B′C′.同理易证AC∥A′C′.
∴∠BAC与∠B′A′C′的两边对应平行且方向相反.
∴∠BAC=∠B′A′C′.
同理∠ABC=∠A′B′C′,∠BCA=∠B′C′A′.
∴△ABC与△A′B′C′的三内角分别相等,
∴△ABC∽△A′B′C′,∵AB∥A′B′,AA′∩BB′=O,
∴在平面ABA′B′中,△AOB∽△A′OB′.
∴==.而S△ABC=AB·AC=×2×1=1.
∴=()2,
∴S△A′B′C′=S△ABC=×1=.
13.解 能.取AB,C1D1的中点M,N,连接A1M,MC,CN,NA1,
∵A1N∥PC1且A1N=PC1,PC1∥MC,PC1=MC,
∴四边形A1MCN是平行四边形,
又∵A1N∥PC1,A1M∥BP,A1N∩A1M=A1,C1P∩PB=P,
∴平面A1MCN∥平面PBC1,
因此,过点A1与截面PBC1平行的截面是平行四边形.
连接MN,作A1H⊥MN于点H,
∵A1M=A1N=,
MN=BC1=2,
∴A1H=.
∴S△A1MN=×2×=.
故S?A1MCN=2S△A1MN=2.2.3.3 直线与平面垂直的性质
2.3.4 平面与平面垂直的性质
一、基础过关
1.已知两个平面互相垂直,那么下列说法中正确的个数是
( )
①一个平面内的直线必垂直于另一个平面内的无数条直线;
②一个平面内垂直于这两个平面交线的直线必垂直于另一个平面内的任意一条直线;
③过一个平面内一点垂直于另一个平面的直线,垂足必落在交线上;
④过一个平面内的任意一点作交线的垂线,则此直线必垂直于另一个平面.
A.4
B.3
C.2
D.1
2.在圆柱的一个底面上任取一点(该点不在底面圆周上),过该点作另一底面的垂线,则这条垂线与圆柱的母线所在直线的位置关系是
( )
A.相交
B.平行
C.异面
D.相交或平行
3.若m、n表示直线,α表示平面,则下列命题中,正确命题的个数为
( )
①?n⊥α;
②?m∥n;
③?m⊥n;
④?n⊥α.
A.1
B.2
C.3
D.4
4.在△ABC所在的平面α外有一点P,且PA=PB=PC,则P在α内的射影是△ABC的( )
A.垂心
B.内心
C.外心
D.重心
5.
如图所示,AF⊥平面ABCD,DE⊥平面ABCD,且AF=DE,AD=6,则EF=________.
6.若α⊥β,α∩β=AB,a∥α,a⊥AB,则a与β的关系为________.
7.
如图,在三棱锥P-ABC中,PA⊥平面ABC,平面PAB⊥平面PBC.
求证:BC⊥AB.
8.
如图所示,在正方体ABCD—A1B1C1D1中,M是AB上一点,N是A1C的中点,MN⊥平面A1DC.
求证:(1)MN∥AD1;
(2)M是AB的中点.
二、能力提升
9.
如图所示,平面α⊥平面β,A∈α,B∈β,AB与两平面α、β所成的角分别为和.过A、B分别作两平面交线的垂线,垂足分别为A′、B′,则AB∶A′B′等于( )
A.2∶1
B.3∶1
C.3∶2
D.4∶3
10.设α-l-β是直二面角,直线a?α,直线b?β,a,b与l都不垂直,那么( )
A.a与b可能垂直,但不可能平行
B.a与b可能垂直,也可能平行
C.a与b不可能垂直,但可能平行
D.a与b不可能垂直,也不可能平行
11.直线a和b在正方体ABCD-A1B1C1D1的两个不同平面内,使a∥b成立的条件是________.(只填序号)
①a和b垂直于正方体的同一个面;
②a和b在正方体两个相对的面内,且共面;
③a和b平行于同一条棱;
④a和b在正方体的两个面内,且与正方体的同一条棱垂直.
12.如图所示,在多面体P—ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,AB=2DC=4.
(1)设M是PC上的一点,
求证:平面MBD⊥平面PAD;
(2)求四棱锥P—ABCD的体积.
三、探究与拓展
13.如图,直三棱柱ABC-A1B1C1中,AC=BC=AA1,D是棱AA1
的中点,DC1⊥BD.
(1)证明:DC1⊥BC;
(2)求二面角A1-BD-C1的大小.
答案
1.B 2.B 3.C 4.C
5.6
6.a⊥β
7.证明 在平面PAB内,作AD⊥PB于D.
∵平面PAB⊥平面PBC,
且平面PAB∩平面PBC=PB.
∴AD⊥平面PBC.
又BC?平面PBC,
∴AD⊥BC.
又∵PA⊥平面ABC,
BC?平面ABC,
∴PA⊥BC,∴BC⊥平面PAB.
又AB?平面PAB,
∴BC⊥AB.
8.证明 (1)∵ADD1A1为正方形,
∴AD1⊥A1D.
又∵CD⊥平面ADD1A1,
∴CD⊥AD1.
∵A1D∩CD=D,
∴AD1⊥平面A1DC.
又∵MN⊥平面A1DC,
∴MN∥AD1.
(2)连接ON,在△A1DC中,
A1O=OD,A1N=NC.
∴ON綊CD綊AB,
∴ON∥AM.
又∵MN∥OA,
∴四边形AMNO为平行四边形,
∴ON=AM.
∵ON=AB,∴AM=AB,
∴M是AB的中点.
9.A 10.C
11.①②③
12.(1)证明 在△ABD中,∵AD=4,BD=8,AB=4,
∴AD2+BD2=AB2.∴AD⊥BD.
又∵面PAD⊥面ABCD,面PAD∩面ABCD=AD,BD?面ABCD,
∴BD⊥面PAD,又BD?面BDM,
∴面MBD⊥面PAD.
(2)解 过P作PO⊥AD,
∵面PAD⊥面ABCD,
∴PO⊥面ABCD,
即PO为四棱锥P—ABCD的高.
又△PAD是边长为4的等边三角形,
∴PO=2.
在底面四边形ABCD中,AB∥DC,AB=2DC,∴四边形ABCD为梯形.
在Rt△ADB中,斜边AB边上的高为=,
此即为梯形的高.
∴S四边形ABCD=×=24.
∴VP—ABCD=×24×2=16.
13.(1)证明 由题设知,三棱柱的侧面为矩形.由于D为AA1的中点,故DC=DC1.
又AC=AA1,可得DC+DC2=CC,所以DC1⊥DC.而DC1⊥BD,CD∩BD=D,所以DC1⊥平面BCD.
因为BC?平面BCD,所以DC1⊥BC.
(2)解 DC1⊥BC,CC1⊥BC?BC⊥平面ACC1A1?BC⊥AC,取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,C1H,A1C1=B1C1?C1O⊥A1B1,面A1B1C1⊥面A1BD?C1O⊥面A1BD,又∵DB?面A1DB,∴C1O⊥BD,又∵OH⊥BD,∴BD⊥面C1OH,C1H?面C1OH,∴BD⊥C1H,得点H与点D重合,且∠C1DO是二面角A1-BD-C的平面角,设AC=a,则C1O=a,C1D=a=2C1O?∠C1DO=30°,故二面角A1-BD-C1的大小为30°.§2.3 直线、平面垂直的判定及其性质
2.3.1 直线与平面垂直的判定
一、基础过关
1.已知直线a∥b,平面α∥β,a⊥α,则b与β的位置关系是
( )
A.b⊥β
B.b∥β
C.b?β
D.b?β或b∥β
2.直线a⊥直线b,b⊥平面β,则a与β的关系是
( )
A.a⊥β
B.a∥β
C.a?β
D.a?β或a∥β
3.空间四边形ABCD的四边相等,则它的两对角线AC、BD的关系是
( )
A.垂直且相交
B.相交但不一定垂直
C.垂直但不相交
D.不垂直也不相交
4.如图所示,定点A和B都在平面α内,定点P?α,PB⊥α,C是平面α内异于A和B的动点,且PC⊥AC,则△ABC为
( )
A.锐角三角形
B.直角三角形
C.钝角三角形
D.无法确定
5.
在正方体ABCD-A1B1C1D1中,
(1)直线A1B与平面ABCD所成的角是________;
(2)直线A1B与平面ABC1D1所成的角是________;
(3)直线A1B与平面AB1C1D所成的角是______.
6.
如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是棱AA1和AB上的点,若∠B1MN是直角,则∠C1MN=______.
7.如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱B1C1、B1B的中点.
求证:CF⊥平面EAB.
8.
如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点,PA=AD.
求证:(1)CD⊥PD;
(2)EF⊥平面PCD.
二、能力提升
9.
如图所示,PA⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数为( )
A.4
B.3
C.2
D.1
10.已知矩形ABCD,AB=1,BC=,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中
( )
A.存在某个位置,使得直线AC与直线BD垂直
B.存在某个位置,使得直线AB与直线CD垂直
C.存在某个位置,使得直线AD与直线BC垂直
D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直
11.在直三棱柱ABC—A1B1C1中,BC=CC1,当底面A1B1C1满足条件________时,有AB1⊥BC1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况).
12.
如图所示,在正方体ABCD-A1B1C1D1中,P为DD1的中点,O为ABCD的中心,求证:B1O⊥平面PAC.
三、探究与拓展
13.已知平面α外两点A、B到平面α的距离分别为1和2,A、B两点在α内的射影之间距离为,求直线AB和平面α所成的角.
答案
1.A 2.D 3.C 4.B
5.(1)45° (2)30° (3)90°
6.90°
7.证明 在平面B1BCC1中,
∵E、F分别是B1C1、B1B的中点,
∴△BB1E≌△CBF,
∴∠B1BE=∠BCF,
∴∠BCF+∠EBC=90°,∴CF⊥BE,
又AB⊥平面B1BCC1,CF?平面B1BCC1,
∴AB⊥CF,又AB∩BE=B,
∴CF⊥平面EAB.
8.证明 (1)∵PA⊥底面ABCD,
∴CD⊥PA.
又矩形ABCD中,CD⊥AD,且AD∩PA=A,∴CD⊥平面PAD,∴CD⊥PD.
(2)取PD的中点G,连接AG,FG.又∵G、F分别是PD、PC的中点,
∴GF綊CD,
∴GF綊AE,
∴四边形AEFG是平行四边形,∴AG∥EF.
∵PA=AD,G是PD的中点,
∴AG⊥PD,∴EF⊥PD,
∵CD⊥平面PAD,AG?平面PAD.
∴CD⊥AG.∴EF⊥CD.
∵PD∩CD=D,∴EF⊥平面PCD.
9.A 10.B
11.∠A1C1B1=90°
12.证明 连接AB1,CB1,设AB=1.
∴AB1=CB1=,
∵AO=CO,∴B1O⊥AC.
连接PB1.
∵OB=OB2+BB=,
PB=PD+B1D=,
OP2=PD2+DO2=,
∴OB+OP2=PB.
∴B1O⊥PO,
又∵PO∩AC=O,∴B1O⊥平面PAC.
13.解 (1)如图①,当A、B位于平面α同侧时,由点A、B分别向平面α作垂线,垂足分别为A1、B1,则AA1=1,BB1=2,B1A1=.过点A作AH⊥BB1于H,则AB和α所成角即为∠HAB.而tan∠BAH==.
∴∠BAH=30°.
(2)如图②,当A、B位于平面α异侧时,经A、B分别作AA1⊥α于A1,BB1⊥α于B1,AB∩α=C,则A1B1为AB在平面α上的射影,∠BCB1或∠ACA1为AB与平面α所成
的角.
∵△BCB1∽△ACA1,
∴==2,
∴B1C=2CA1,而B1C+CA1=,
∴B1C=.
∴tan∠BCB1===,
∴∠BCB1=60°.
综合(1)、(2)可知:AB与平面α所成的角为30°或60°.2.2.3 直线与平面平行的性质
一、基础过关
1.a,b是两条异面直线,P是空间一点,过P作平面与a,b都平行,这样的平面( )
A.只有一个
B.至多有两个
C.不一定有
D.有无数个
2.
如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为( )
A.AC⊥BD
B.AC∥截面PQMN
C.AC=BD
D.异面直线PM与BD所成的角为45°
3.
如图所示,长方体ABCD-A1B1C1D1中,E、F分别是棱AA1和BB1的中点,过EF的平面EFGH分别交BC和AD于G、H,则HG与AB的位置关系是
( )
A.平行
B.相交
C.异面
D.平行和异面
4.直线a∥平面α,α内有n条直线交于一点,则这n条直线中与直线a平行的直线( )
A.至少有一条
B.至多有一条
C.有且只有一条
D.没有
5.设m、n是平面α外的两条直线,给出三个论断:
①m∥n;②m∥α;③n∥α.以其中的两个为条件,余下的一个为结论,构造三个命题,写出你认为正确的一个命题:______________.(用序号表示)
6.
如图所示,ABCD—A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1、B1C1的中点,P是上底面的棱AD上的一点,AP=,过P,M,N的平面交上底面于PQ,Q在CD上,则PQ=________.
7.
ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:AP∥GH.
8.
如图所示,三棱锥A—BCD被一平面所截,截面为平行四边形EFGH.
求证:CD∥平面EFGH.
二、能力提升
9.如图所示,平面α∩β=l1,α∩γ=l2,β∩γ=l3,l1∥l2,下列说法正确的是( )
A.l1平行于l3,且l2平行于l3
B.l1平行于l3,且l2不平行于l3
C.l1不平行于l3,且l2不平行于l3
D.l1不平行于l3,但l2平行于l3
10.如图所示,已知A、B、C、D四点不共面,且AB∥平面α,CD∥α,AC∩α=E,AD∩α=F,BD∩α=H,BC∩α=G,则四边形EFHG的形状是________.
10题图 11题图
11.如图所示,在空间四边形ABCD中,E、F、G、H分别是四边上的点,它们共面,并且AC∥平面EFGH,BD∥平面EFGH,AC=m,BD=n,当四边形EFGH是菱形时,AE∶EB=________.
12.
如图所示,P为平行四边形ABCD所在平面外一点,M、N分别为AB、PC的中点,平面PAD∩平面PBC=l.
(1)求证:BC∥l;
(2)MN与平面PAD是否平行?试证明你的结论.
三、探究与拓展
13.如图所示,三棱柱ABC—A1B1C1,D是BC上一点,且A1B∥平面AC1D,D1是B1C1的中点,求证:平面A1BD1∥平面AC1D.
答案
1.C 2.C 3.A 4.B
5.①②?③(或①③?②) 6.a
7.证明 如图所示,连接AC交BD于O,连接MO,
∵ABCD是平行四边形,
ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:AP∥GH.
∴O是AC中点,又M是PC的中点,
∴AP∥OM.
根据直线和平面平行的判定定理,
则有PA∥平面BMD.
∵平面PAHG∩平面BMD=GH,
根据直线和平面平行的性质定理,
则有AP∥GH.
8.证明 ∵四边形EFGH为平行四边形,
∴EF∥GH.
又GH?平面BCD,EF?平面BCD.
∴EF∥平面BCD.
而平面ACD∩平面BCD=CD,EF?平面ACD,∴EF∥CD.
而EF?平面EFGH,CD?平面EFGH,
∴CD∥平面EFGH.
9.A 10.平行四边形
11.m∶n
12.(1)证明 因为BC∥AD,AD?平面PAD,
BC?平面PAD,所以BC∥平面PAD.
又平面PAD∩平面PBC=l,BC?平面PBC,所以BC∥l.
(2)解 MN∥平面PAD.
证明如下:
如图所示,取PD中点E.
连接EN、AE.
又∵N为PC中点,∴EN綊AB
∴EN綊AM,∴四边形ENMA为平行四边形,∴AE∥MN.
又∵AE?平面PAD,MN?平面PAD,
∴MN∥平面PAD.
13.证明 连接A1C交AC1于点E,
∵四边形A1ACC1是平行四边形,
∴E是A1C的中点,连接ED,
∵A1B∥平面AC1D,
平面A1BC∩平面AC1D=ED,
∴A1B∥ED,
∵E是A1C的中点,∴D是BC的中点.又∵D1是B1C1的中点,∴BD1∥C1D,
又∵C1D?平面AC1D,BD1?平面AC1D,
∴BD1∥平面AC1D,
又A1B∩BD1=B,
∴平面A1BD1∥平面AC1D.第二章 点、直线、平面之间的位置关系
§2.1 空间点、直线、平面之间的位置关系
2.1.1 平 面
一、基础过关
1.下列命题:
①书桌面是平面;
②有一个平面的长是50
m,宽是20
m;
③平面是绝对的平、无厚度,可以无限延展的抽象数学概念.
其中正确命题的个数为
( )
A.1个
B.2个
C.3个
D.0个
2.下列图形中,不一定是平面图形的是
( )
A.三角形
B.菱形
C.梯形
D.四边相等的四边形
3.空间中,可以确定一个平面的条件是
( )
A.两条直线
B.一点和一条直线
C.一个三角形
D.三个点
4.已知平面α与平面β、γ都相交,则这三个平面可能的交线有
( )
A.1条或2条
B.2条或3条
C.1条或3条
D.1条或2条或3条
5.给出以下命题:①和一条直线都相交的两条直线在同一平面内;②三条两两相交的直线在同一平面内;③有三个不同公共点的两个平面重合;④两两平行的三条直线确定三个平面.其中正确命题的个数是________.
6.已知α∩β=m,a?α,b?β,a∩b=A,则直线m与A的位置关系用集合符号表示为________.
7.如图,梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线,并说明理由.
8.空间中三个平面两两相交于三条直线,这三条直线两两不平行,证明此三条直线必相交于一点.
二、能力提升
9.空间不共线的四点,可以确定平面的个数是
( )
A.0
B.1
C.1或4
D.无法确定
10.已知α、β为平面,A、B、M、N为点,a为直线,下列推理错误的是
( )
A.A∈a,A∈β,B∈a,B∈β?a?β
B.M∈α,M∈β,N∈α,N∈β?α∩β=MN
C.A∈α,A∈β?α∩β=A
D.A、B、M∈α,A、B、M∈β,且A、B、M不共线?α、β重合
11.下列四个命题:
①两个相交平面有不在同一直线上的三个公共点;
②经过空间任意三点有且只有一个平面;
③过两平行直线有且只有一个平面;
④在空间两两相交的三条直线必共面.
其中正确命题的序号是________.
12.
如图所示,四边形ABCD中,已知AB∥CD,AB,BC,DC,AD(或延长线)分别与平面α相交于E,F,G,H,求证:E,F,G,H必在同一直线上.
三、探究与拓展
13.
如图,在正方体ABCD-A1B1C1D1中,对角线A1C与平面BDC1交于点O,AC、BD交于点M,E为AB的中点,F为AA1的中点.
求证:(1)C1、O、M三点共线;
(2)E、C、D1、F四点共面.
答案
1.A 2.D 3.C 4.D
5.0
6.A∈m
7.
解 很明显,点S是平面SBD和平面SAC的一个公共点,
即点S在交线上,
由于AB>CD,则分别延长AC和BD交于点E,如图所示.
∵E∈AC,AC?平面SAC,∴E∈平面SAC.
同理,可证E∈平面SBD.
∴点E在平面SBD和平面SAC的交线上,连接SE,直线SE是平面SBD和平面SAC的
交线.
8.证明 ∵l1?β,l2?β,l1D∥\l2,
∴l1、l2交于一点,记交点为P.
∵P∈l1?α,P∈l2?γ,∴P∈α∩γ=l3,
∴l1,l2,l3交于一点.
9.C 10.C
11.③
12.证明 因为AB∥CD,所以AB,CD确定平面AC,AD∩α=H,因为H∈平面AC,H∈α,由公理3可知,H必在平面AC与平面α的交线上.同理F、G、E都在平面AC与平面α的交线上,因此E,F,G,H必在同一直线上.
13.证明 (1)∵C1、O、M∈平面BDC1,
又C1、O、M∈平面A1ACC1,由公理3知,点C1、O、M在平面BDC1与平面A1ACC1的交线上,
∴C1、O、M三点共线.
(2)∵E,F分别是AB,A1A的中点,∴EF∥A1B.∵A1B∥CD1,∴EF∥CD1.
∴E、C、D1、F四点共面.2.1.3 空间中直线与平面之间的位置关系
2.1.4 平面与平面之间的位置关系
一、基础过关
1.已知直线a∥平面α,直线b?α,则a与b的位置关系是
( )
A.相交
B.平行
C.异面
D.平行或异面
2.直线l与平面α不平行,则
( )
A.l与α相交
B.l?α
C.l与α相交或l?α
D.以上结论都不对
3.如果直线a∥平面α,那么直线a与平面α内的
( )
A.一条直线不相交
B.两条直线不相交
C.无数条直线不相交
D.任意一条直线不相交
4.如果平面α外有两点A、B,它们到平面α的距离都是a,则直线AB和平面α的位置关系一定是
( )
A.平行
B.相交
C.平行或相交
D.AB?α
5.直线a?平面α,直线b?
平面α,则a,b的位置关系是________.
6.若a、b是两条异面直线,且a∥平面α,则b与α的位置关系是________.
7.平面α内有无数条直线与平面β平行,那么α∥β是否正确?说明理由.
8.
如图,直线a∥平面α,a?β,α∩β=b,求证:a∥b.
二、能力提升
9.下列命题正确的是
( )
A.若直线a在平面α外,则直线a∥α
B.若直线a与平面α有公共点,则a与α相交
C.若平面α内存在直线与平面β无交点,则α∥β
D.若平面α内的任意直线与平面β均无交点,则α∥β
10.教室内有一根直尺,无论怎样放置,在地面上总有这样的直线与直尺所在的直线( )
A.异面
B.相交
C.平行
D.垂直
11.若不在同一条直线上的三点A、B、C到平面α的距离相等,且A、B、CD/∈α,则面ABC与面α的位置关系为________.
12.
如图,平面α、β、γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b、a与β的关系并证明你的结论.
三、探究与拓展
13.正方体ABCD—A1B1C1D1中,点Q是棱DD1上的动点,判断过A、Q、B1三点的截面图形的形状.
答案
1.D 2.C 3.D 4.C
5.平行、相交或异面
6.b?α,b∥α或b与α相交
7.解 不正确.如图,设α∩β=l,则在α内与l平行的直线可以有无数条,如a1,a2,…,an,它们是一组平行线,这时a1,a2,…,an与平面β平行,但此时α与β不平行,α∩β=l.
8.证明 ∵直线a∥平面α,
∴直线a与平面α无公共点.
∵α∩β=b,∴b?α,b?β.
∴直线a与b无公共点.
∵a?β,∴a∥b.
9.D 10.D 11.平行或相交
12.解 由α∩γ=a知a?α且a?γ,
由β∩γ=b知b?β且b?γ,
∵α∥β,a?α,b?β,∴a、b无公共点.
又∵a?γ且b?γ,∴a∥b.
∵α∥β,∴α与β无公共点,
又a?α,∴a与β无公共点,∴a∥β.
13.解 由点Q在线段DD1上移动,当点Q与点D1重合时,截面图形为等边三角形AB1D1,
如图(1)所示;
当点Q与点D重合时,截面图形为矩形AB1C1D,如图(2)所示;
图(1)
图(2)
当点Q不与点D,D1重合时,截面图形为等腰梯形AQRB1,如图(3)所示.
图(3)