6 球面三角形的面积与欧拉公式
问题提出
1.如何计算球面三角形的面积?球面三角形面积与平面三角形面积有什么区别?
2.如何利用球面三角形面积公式证明球面多面体的欧拉公式?
3.如何利用球面知识证明简单多面体的欧拉公式?
6.1球面二角形与三角形的面积
我们知道,若球面半径为R,则球面面积为,现在考虑球面上的一个小区域:球面上由两个大圆的半周所围成的较小部分叫做一个球面二角形。
如图所示,大圆半周和所围成的阴影部分就是一个球面二角形。显然P和是对径点,大圆半周和称为球面二角形的边。球面角称为球面二角形的夹角。如果大圆弧以P和为极点,所对的球心角为,则=。
计算地球上一个时区所占有的面积。
解 如图所示,设O为地心,N、S为北极点和南极点,A、B为赤道上两点,且,地球半径为R=6400km,
根据地理知识,地球共分为24个时区,一个时区跨越地球表面,所以由经线NAS与经线NBS围成的二角形就是一个时区,它所占面积为地球表面积的,
即
如何计算一般球面二角形的面积?
二角形的夹角,就是平面PA与PB所夹的二面角的平面角;
这个二角形可以看成半个大圆绕直径P旋转角所生成;
球面二角形的面积与其夹角成比例。
设这个二角形得面积为,则
即
抽象概括:球面上,夹角为的二角形的面积为。
如何计算球面三角形的面积?
设表示球面三角形ABC的面积,
对球面三角形ABC,分别画出三条边所在的大圆。
设A、B、C的对径点分别是,则
球面三角形+球面三角形+球面三角形+球面三角形构成半个球面,所以
+++=
又因为
所以得到
抽象概括
定理6.1 球面三角形的面积等于其内角和减去。球面三角形的三个内角和大于。
即球面三角形ABC的面积,其中是球面三角形ABC的内角。
计算以北京、上海、重庆为顶点的球面三角形的边长和的面积。
解 根据地理知识,北京位于北纬39°56′、东经116°20′,上海位于北纬31°14′、东经121°29′,重庆位于北纬29°30′、东经106°30′的经纬度,地球半径为R=6400km,
如图所示,设N为北极点,B为北京,S为上海,C为重庆,
在球面三角形NBC中,弧度,
,
,
解球面三角形NBC,有
,
即 ,
同理 ,
解球面三角形BSC,有
,
即 弧度,
同理 弧度,弧度,
所以球面三角形BSC的面积为。
练习
证明:半径为R的球面上,夹角为的二角形的面积为。
证明:半径为R的球面上,球面三角形ABC的面积。
已知球面二角形的面积是球面面积的,求其夹角。
已知球面三角形的边角关系如下,求它的面积(前2组为单位球面,后两组球面半径为2):
已知
已知
已知
已知
查阅资料,比较例2结果与实际数据的差异。
已知球面三角形ABC的三个内角之和为,求这个球面三角形的面积与球面面积的比。
用4个全等的球面三角形覆盖整个球面,如何构造?
6.2球面上的欧拉公式
设S是一个球面,我们把球面分割成若干个球面三角形,要求球面上的每一点至少包含在某个球面三角形的内部或边上。同时,任何两个球面三角形或者没有公共点,或者有一个公共点的顶点,或者有一条公共边,三者比居其一,这样构成的球面上的网络,叫做球面S上的一个三角剖分,记为。
图中所示的两个三角形的位置关系在球面的三角剖分中都是不允许出现的。
设是球面S的一个三角剖分,的顶点数记为V,三角形边数记为E,三角形的个数记为F,那么V、E、F满足什么关系?
例3 观察下面的球面三角剖分,记录它们的顶点数V,三角形边数E和三角形个数F,说明它们满足什么关系?
解 在左图中,顶点为A、B、C、D,顶点数V=4,
三角形的边为AB、AC、AD、BC、BD、CD,边数E=6,
三角形为ABC、ABD、ACD、BCD,三角形个数F=4,
所以 ;
在中图中,顶点为A、B、C、D、E、F,顶点数V=6,
三角形的边为AB、AC、AD、AE,FB、FC、FD、FE、BC、BE、CD、ED,边数E=12,
三角形为ABC、ABE、ACD、ADE,FBC、FBE、FCD、FDE,三角形个数F=8,
所以 ;
在右图中,顶点为A、B、C、D、E、F、G、H,顶点数V=8,
三角形的边为AB、AC、AH、HD、AE、CH、HE,FG、GB、FC、FD、FE、BC、BE、CD、ED、CG、GE,边数E=18,
三角形为ABC、ABE、ACH、CHD、AHE、HED,FGC、GCB、FGE、GEB、FCD、FDE,三角形个数F=12,
所以 。
抽象概括
球面上的三角剖分满足下面的公式:。其中V、E、F分别是三角剖分的顶点数,三角形边数和三角形个数。
我们把这个公式叫做球面的欧拉公式。
这个公式与球面的大小,三角剖分的方式无关。即不管你在怎样的球面上,如何进行三角剖分,虽然V、E、F都发生了很大的变化,但是它们永远满足欧拉公式。因此,欧拉公式一定反映出球面本身固有的某种性质。
在另一个专题《欧拉公式与闭曲面的分类》中,将对这个问题进行详细讨论。
如何利用球面三角形面积公式证明球面多面体的欧拉公式?
考虑E和F的关系:球面上共有F个三角形,每个三角形有三条边,每条边属于两个三角形,所以
即 。
把F个三角形编号,记为。对于第个三角形,设它的面积为,三角形的内角分别为,那么
。
因此,整个球面的面积
因为三角剖分共有V个顶点,而在每个顶点处,以它为顶点的所有球面角之和为,所以
。
根据(1)、(2)、(3)式,得
。
这个公式用欧拉的名字命名,是因为在1750年欧拉首次发现了凸多面体的欧拉公式。
由若干个平面多边形所围成的封闭的立体,称为多面体。如果一个多面体在它的每一个面所决定的平面的同一侧,就称为凸多面体。
如图所示,(1)、(2)、(3)、(4)、(5)都是凸多面体,而(6)、(7)不是凸多面体。
用V表示凸多面体的顶点数,E表示凸多面体的棱数,F表示凸多面体的面数,欧拉证明了:
。
思考交流
观察上面的图形,写出它们的顶点数V、棱数E和面数F,并验证欧拉公式。
正如上面的(6)中看到的一样,后来又可以把凸多面体的欧拉公式推广到简单多面体。
当把多面体想象成由橡皮薄膜围成的,一充气这个橡皮薄膜就可以变成一个球面,这样的多面体就是简单多面体。
上图中的(1)、(2)、(3)、(4)、(5)、(6)都是简单多面体,而(7)不是简单多面体。
如何利用球面知识证明简单多面体的欧拉公式?
观察下面的图形,写出凸多面体和它对应的球面三角剖分的顶点数V、棱数E和面数F,并验证凸多面体的欧拉公式和它对应的球面三角剖分的欧拉公式。
解 在上图中,凸多面体的顶点数V=4,棱数E=6,面数F=4
它对应的球面三角剖分的顶点数V=4,棱数E=6,面数F=4,
凸多面体的欧拉公式是,它对应的球面三角剖分的欧拉公式;
在中图中,凸多面体的顶点数V=6,棱数E=12,面数F=8
它对应的球面三角剖分的顶点数V=6,棱数E=12,面数F=8,
凸多面体的欧拉公式是,它对应的球面三角剖分的欧拉公式;
在下图中,凸多面体的顶点数V=8,棱数E=18,面数F=12
它对应的球面三角剖分的顶点数V=8,棱数E=18,面数F=12,
凸多面体的欧拉公式是,它对应的球面三角剖分的欧拉公式;
下面我们给出简单多面体的欧拉公式的证明思路。
不失一般性,我们不妨假设简单多面体P的顶点都在同一个单位球面S上。
如果A、B是简单多面体上两个顶点,且连结A、B的线段是多面体P的一条棱,过A、B作球面S的大圆劣弧,这样就得到一个覆盖整个球面的球面多边形。
在这个变化过程中,多面体P和它对应的球面多边形的顶点数V、棱数(边数)E和面数F都是一样的。
在球面多边形中连接顶点使得它成为球面S的一个三角剖分,在此过程中,每添加一条大圆劣弧,边数E就变成E+1,与此同时,面数F就变成F+1。
假设中一共新连结了N条大圆劣弧,那么边数为E+N,面数为F+N,而顶点数V不变,根据球面三角剖分的欧拉公式,有,
因此 。
习题
A
已知地球表面上的球面三角形的三边分别是1000km,1500km,2000km,求它的面积。
在单位球面上,已知等边球面三角形的面积等于球面面积的,求它的三个内角和三条边。
已知一个简单多面体的顶点数为8,面数为6,求这个多面体的棱数。
在一个球面上,画出一个三角剖分,并分别数出V、E、F,验证欧拉公式。
如图所示,验证简单多面体的欧拉公式。
若是球面上的一个三角剖分,说明的三角形个数一定是偶数。
用8个全等的球面三角形覆盖整个球面,如何构造?
在平面上,用等边三角形可以覆盖整个平面,从一点出发需要6个等边三角形。从球面上一点出发,用5个球面等边三角形覆盖整个球面,这样的球面三角形覆盖是否成立?说明你的想法。
B
求以北京、上海、广州为顶点的球面三角形的面积。
球面上除了可以有等边三角形覆盖外,还有其它三角形的覆盖吗?举例说明。
6