苏科版八年级上册数学第5章平面直角坐标系单元基础练习(含答案)

文档属性

名称 苏科版八年级上册数学第5章平面直角坐标系单元基础练习(含答案)
格式 zip
文件大小 107.9KB
资源类型 教案
版本资源 苏科版
科目 数学
更新时间 2020-08-16 09:26:51

图片预览

文档简介

八年级数学第5章《平面直角坐标系》单元基础练习
一、选择题:
1、如图所示,小手盖住的点的坐标可能为(
)

A.(5,2)
B.(-6,3)
C.(-4,-6)
D.(3,-4)
2、若点P(a,b)在第四象限,则点M(b-a,a-b)在(

A.
第一象限
B.
第二象限
C.
第三象限
D.
第四象限
3、已知△ABC的面积为3,边BC长为2,以B为坐标原点,BC所在的直线为x轴,则点A的纵坐标为(

A.
3
B.-3
C.6
D.±3
4、P(x,y);Q(m,n),如果x+m=0,y+n=0,那么点P与Q
(  )
A关于原点对称
B.关于x轴对称
C.关于y轴对称
D.关于直线y=x对称
5、点A(2,-1)关于x轴对称的点B的坐标为(

A.(2,1)
B.
(-2,1)
C.
(2,-1)
D.
(-2,-1)
6、如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2019次碰到矩形的边时,点P的坐标为(
  )
A.(1,4)
 
 
B.(1,0)
C.(6,4)
 
D.(8,3)
7、已知点P(-3
,
a),Q(b
,2)是关于原点的对称点,则a与b的值为(
)
A、a=2,b=3
B、a=-2,b=3
C、a=2,b=-3
D、a=-2,b=-3
8、已知点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上,且B点到x轴的距离等于3,则点B的坐标为(

A.(-3,3)
B.(3,-3)
C.(-3,3)或(3,-3)
D.(-3,3)或(-3,-3)
二、填空题:
9、若点B(a,b)在第三象限,则点C(-a+1,3b-5)
在第
象限。
10、课间操时小华、小军、小刚的位置如图所示,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以用坐标表示成  .
11、点A(a2,2a-3)在第二、第四象限坐标轴夹角平分线上,那么a=
_______.
12、已知P点坐标为(2a+1,a-3

①点P在x轴上,则a=

②点P在y轴上,则a=

③点P在第三象限内,则a的取值范围是

④点P在第四象限内,则a的取值范围是
.
13、已知点P的坐标(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是_________。
14、在坐标系内,点P(2,-2)和点Q(2,4)之间的距离等于
个单位长度。线段PQ的中点的坐标是

三、解答题:
15、李老师到人民公园游玩,回到家后,他利用平面直角坐标系画出了公园的景区地图,如图所示.可是他忘记了在图中标出原点和x轴、y轴.只知道游乐园D的坐标为(2,﹣2).
(1)请你帮李老师在图中建立平面直角坐标系.
(2)并求出所有景点的坐标.
16、作图题:(不要求写作法如图,△ABC在平面直角坐标系中,其中,点A、B、C的坐标分别为A(-2,1),B(-4,5),C(-5,2).
(1)作△ABC关于直线l:x=-1对称的△A1B1C1,其中,点A、B、C的对应点分别为A1、B1、C1;
(2)写出点A1、B1、C1的坐标.
17、在平面直角坐标系xoy中,A、B两点分别在x轴、y轴的正半轴上,且OB=OA=3.
(1)求点A、B的坐标;
(2)若点C(-2,2),求△BOC的面积.
(3)点P是第一、三象限的角平分线上的一点,若S△ABF=16.5,求点P的坐标.
18、如图,将△ABC向右平移2个单位长度,再向下平移3个单位长度,得到对应的△A1B1C1,在图中画出并写出点A1、B1、C1的坐标.
19、平面直角坐标系中,分别描出点A(-1,0),B(0,2),C(1,0),D(0,-2).
(1)试判断四边形ABCD的形状;
(2)若B、D两点不动,你能通过变动点A、C的位置使四边形ABCD成为正方形吗?若能,请写出变动后的点A、C的坐标.
20、类似于平面直角坐标系,如图1,在平面内,如果原点重合的两条数轴不垂直,那么我们称这样的坐标系为斜坐标系.若P是斜坐标系xOy中的任意一点,过点P分别作两坐标轴的平行线,与x轴、y轴交于点M、N,如果M、N在x轴、y轴上分别对应的实数是a、b,这时点P的坐标为(a,b).
(1)如图2,在斜坐标系xOy中,画出点A(﹣2,3);
(2)如图3,在斜坐标系xOy中,已知点B(5,0)、C(0,4),且P(x,y)是线段CB上的任意一点,则y与x之间的等量关系式为  ;
(3)若(2)中的点P在线段CB的延长线上,其它条件都不变,试判断(2)中的结论是否仍然成立,并说明理由.
参考答案
一、选择题:
1、D
2、B
3、D
4、A
5、A
6、
B
7、B
8、D
二、填空题:
9、

10、
(4,3)
11、
1或-3
12、3
-0.5
13、(3,3)或(-6,-6)
14、6
(2,1)
三、解答题:
15、略
16、略
17、(1)
(3,0)
(0,3)
(2)3
(3)
(7,7)或(-4,-4)
18、略
19、菱形
(2,0)
(-2,0)
20、(2)3x+4y=12
(3)成立