3.向心加速度
【学习素养·明目标】 物理观念:1.理解向心加速度的概念.2.知道向心加速度和线速度、角速度的关系式.3.能够运用向心加速度公式求解有关问题.
科学思维:1.通过生活实例,总结向心加速度的方向,培养逻辑思维能力.2.理解向心加速度的意义,进一步理解加速度是描述速度变化快慢的物理量.
一、匀速圆周运动的加速度方向
1.定义:任何做匀速圆周运动的物体的加速度都指向圆心,这个加速度叫作向心加速度.
2.向心加速度的作用:向心加速度的方向总是与速度方向垂直,故向心加速度的作用只改变速度的方向,对速度的大小无影响.
二、匀速圆周运动的加速度大小
1.向心加速度公式
(1)基本公式an==ω2r.
(2)拓展公式an=·r=ωv.
2.向心加速度的公式既适用于匀速圆周运动,也适用于非匀速圆周运动.
1.思考判断(正确的打“√”,错误的打“×”)
(1)匀速圆周运动的加速度始终不变.
(×)
(2)匀速圆周运动是匀变速运动.
(×)
(3)匀速圆周运动的向心加速度的方向指向圆心,大小不变.
(√)
(4)根据an=知加速度an与半径r成反比.
(×)
(5)根据an=ω2r知加速度an与半径r成正比.
(×)
2.下列关于向心加速度的说法中正确的是( )
A.向心加速度的方向始终指向圆心
B.向心加速度的方向保持不变
C.在匀速圆周运动中,向心加速度是恒定的
D.在匀速圆周运动中,向心加速度的大小不断变化
A [向心加速度的方向时刻指向圆心,A正确;向心加速度的大小不变,方向时刻指向圆心,不断变化,故B、C、D错误.]
3.关于物体随地球自转的加速度大小,下列说法中正确的是( )
A.在赤道上最大
B.在两极上最大
C.地球上处处相同
D.随纬度的增加而增大
A [物体随地球自转角速度相同,但自转的圆心在地轴上,自转的半径由赤道向两极逐渐减小,赤道处最大,由公式a=ω2r知:自转的加速度由赤道向两极逐渐减小,因此,选项A正确,选项B、C、D错误.]
向心加速度的理解
[观察探究]
如图所示为游乐设施空中飞车的示意图,当飞车做匀速圆周运动时,物体受几个力?合力的方向如何?合力产生的加速度就是向心加速度吗?加速度方向一定指向圆心吗?
提示:在匀速圆周运动中,物体受两个力,重力和绳子的拉力,合力指向做圆周运动的圆心,产生的加速度就是向心加速度,加速度方向一定指向圆心.
[探究归纳]
1.向心加速度的物理意义
描述线速度改变的快慢,只表示线速度的方向变化的快慢,不表示其大小变化的快慢.
2.方向
总是沿着圆周运动的半径指向圆心,即方向始终与运动方向垂直,方向时刻改变.
3.圆周运动的性质
不论向心加速度an的大小是否变化,an的方向是时刻改变的,所以圆周运动的向心加速度时刻发生改变,圆周运动一定是非匀变速曲线运动.
4.变速圆周运动的向心加速度
做变速圆周运动的物体,加速度一般情况下不指向圆心,该加速度有两个分量:一是向心加速度,二是切向加速度.向心加速度表示速度方向变化的快慢,切向加速度表示速度大小变化的快慢.所以变速圆周运动中,向心加速度的方向也总是指向圆心.
【例1】 下列关于匀速圆周运动中向心加速度的说法正确的是( )
A.向心加速度表示做圆周运动的物体速率改变的快慢
B.向心加速度表示角速度变化的快慢
C.向心加速度描述线速度方向变化的快慢
D.匀速圆周运动的向心加速度不变
C [匀速圆周运动中速率不变,向心加速度只改变速度的方向,显然A项错误;匀速圆周运动的角速度是不变的,所以B项错误;匀速圆周运动中速度的变化只表现为速度方向的变化,加速度作为反映速度变化快慢的物理量,向心加速度只描述速度方向变化的快慢,所以C项正确;向心加速度的方向是变化的,所以D项错误.]
向心加速度的特点
(1)向心加速度只描述线速度方向变化的快慢,沿切线方向的加速度描述线速度大小变化的快慢.
(2)向心加速度的方向始终与速度方向垂直,且方向不断改变.
1.下列关于匀速圆周运动的性质的说法正确的是( )
A.匀速运动
B.匀加速运动
C.加速度不变的曲线运动
D.变加速曲线运动
D [匀速圆周运动是变速运动,它的加速度大小不变,方向始终指向圆心,是变量,故匀速圆周运动是变加速曲线运动,A、B、C错,D对.]
2.如图所示,质量为m的木块从半径为R的半球形碗口下滑到碗的最低点的过程中,如果由于摩擦力的作用使木块的速率不变,那么( )
A.加速度为零
B.加速度恒定
C.加速度大小不变,方向时刻改变,但不一定指向圆心
D.加速度大小不变,方向时刻指向圆心
D [由题意知,木块做匀速圆周运动,木块的加速度大小不变,方向时刻指向圆心,D正确,A、B、C错误.]
向心加速度的公式及应用
[观察探究]
如图所示,两个啮合的齿轮,其中A点为小齿轮边缘上的点,B点为大齿轮边缘上的点,C点为大齿轮中间的点.
(1)哪两个点的向心加速度与半径成正比?
(2)哪两个点的向心加速度与半径成反比?
提示:(1)B、C两个点的角速度相同,由an=ω2r知向心加速度与半径成正比.
(2)A、B两个点的线速度相同,由an=知向心加速度与半径成反比.
[探究归纳]
1.向心加速度的几种表达式
2.向心加速度的大小与半径的关系
(1)当半径一定时,向心加速度的大小与角速度的平方成正比,也与线速度的平方成正比.随频率的增大或周期的减小而增大.
(2)当角速度一定时,向心加速度与运动半径成正比.
(3)当线速度一定时,向心加速度与运动半径成反比.
(4)an与r的关系图象:如图所示,由an?r图象可以看出,an与r成正比还是反比,要看ω恒定还是v恒定.
3.向心加速度的注意要点
(1)向心加速度是矢量,方向总是指向圆心,始终与速度方向垂直,故向心加速度只改变速度的方向,不改变速度的大小.向心加速度的大小表示速度方向改变的快慢.
(2)向心加速度的公式适用于所有圆周运动的向心加速度的计算.包括非匀速圆周运动.但an与v具有瞬时对应性.
【例2】 如图所示,一个大轮通过皮带拉着小轮转动,皮带和两轮之间无相对滑动,大轮的半径是小轮半径的2倍,大轮上的一点S离转动轴的距离是大轮半径的.当大轮边缘上的P点的向心加速度是12
m/s2时,大轮上的S点和小轮边缘上的Q点的向心加速度各为多少?
思路点拨:①P和S在同一轮上,角速度相同,选用an=ω2r计算向心加速度.
②P和Q为皮带传动的两个轮边缘上的点,线速度相等,选用an=计算向心加速度.
[解析] 同一轮子上的S点和P点的角速度相同,
即ωS=ωP
由向心加速度公式an=ω2r,得=
故aS=aP=×12
m/s2=4
m/s2
又因为皮带不打滑,所以皮带传动的两轮边缘上各点的线速度大小相等,即vP=vQ
由向心加速度公式an=得=
故aQ=aP=2×12
m/s2=24
m/s2.
[答案] 4
m/s2 24
m/s2
向心加速度公式的应用技巧
向心加速度的每一个公式都涉及三个物理量的变化关系,必须在某一物理量不变时分析另外两个物理量之间的关系.在比较转动物体上做圆周运动的各点的向心加速度的大小时,应按以下步骤进行:
(1)先确定各点是线速度大小相等,还是角速度相同.
(2)在线速度大小相等时,向心加速度与半径成反比,在角速度相同时,向心加速度与半径成正比.
3.如图所示为两级皮带传动装置,转动时皮带均不打滑,中间两个轮子是固定在一起的,轮1的半径和轮2的半径相同,轮3的半径和轮4的半径相同,且为轮1和轮2半径的一半,则轮1边缘的a点与轮4边缘的c点相比( )
A.线速度之比为1∶4
B.角速度之比为4∶1
C.向心加速度之比为8∶1
D.向心加速度之比为1∶8
D [由题意知2va=2v3=v2=vc,其中v2、v3为轮2和轮3边缘的线速度,所以va∶vc=1∶2,A错误;设轮4的半径为r,则aa==eq
\f(\b\lc\(\rc\)(\a\vs4\al\co1(\f(vc,2))),2r)==ac,即aa∶ac=1∶8,C错误,D正确;==,B错误.]
4.滑板运动是深受青少年喜爱的运动,如图所示,某滑板运动员恰好从B点进入半径为2.0
m的圆弧轨道,该圆弧轨道在C点与水平光滑轨道相接,运动员滑到C点时的速度大小为10
m/s.求他到达C点前、后瞬间的加速度(不计各种阻力).
[解析] 运动员到达C点前的瞬间做圆周运动,加速度大小a==
m/s2=50
m/s2,方向在该位置指向圆心即竖直向上.运动员到达C点后的瞬间做匀速直线运动,加速度为0.
[答案] 50
m/s2,方向竖直向上 0
课
堂
小
结
知
识
脉
络
1.圆周运动是变速运动,故圆周运动一定有加速度,任何做匀速圆周运动的加速度都指向圆心,这个加速度叫向心加速度.2.向心加速度的大小为an==rω2,向心加速度的方向始终沿半径指向圆心,与线速度方向垂直.3.向心加速度是由物体受到指向圆心的力产生的,反映了速度方向变化的快慢.
1.关于圆周运动的概念,以下说法中正确的是( )
A.匀速圆周运动是速度恒定的运动
B.做匀速圆周运动的物体,向心加速度越大,物体的速度增加得越快
C.做圆周运动物体的加速度方向一定指向圆心
D.物体做半径一定的匀速圆周运动时,其线速度与角速度成正比
D [匀速圆周运动的速度方向是轨迹切线方向,时刻改变,故A错误.做匀速圆周运动的物体,速度大小不变,方向改变,向心加速度越大,速度方向改变的越快,故B错误.只有匀速圆周运动的加速度始终指向圆心,变速圆周运动的加速度不指向圆心,故C错误.物体做半径一定的匀速圆周运动时,根据v=rω,其线速度与角速度成正比,故D正确.]
2.如图所示,一球体绕轴O1O2以角速度ω旋转,A、B为球体上两点.下列说法中正确的是( )
A.A、B两点具有相同的角速度
B.A、B两点具有相同的线速度
C.A、B两点具有相同的向心加速度
D.A、B两点的向心加速度方向都指向球心
A [A、B都随球体一起绕轴O1O2旋转,转一周所用时间相等,故角速度相等,有ωA=ωB=ω,A正确;A做圆周运动的轨道平面与轴垂直,交点为圆心,设球半径为R,故A的轨道半径rA=Rsin
60°,B的轨道半径rB=Rsin
30°,所以两者的线速度vA=rAω=Rω,vB=rBω=Rω,显然,vA>vB,B错误;两者的向心加速度aA=rAω2=Rω2,aB=rBω2=Rω2,显然,两者的向心加速度也不相等,C错误;又两者的向心加速度指向各自的圆心,并不指向球心,所以D错误.]
3.A、B两艘快艇在湖面上做匀速圆周运动,在相同时间内,它们通过的路程之比是4∶3,运动方向改变的角度之比是3∶2,则它们( )
A.线速度大小之比为4∶3
B.角速度大小之比为3∶4
C.圆周运动的半径之比为2∶1
D.向心加速度大小之比为1∶2
A [因为相同时间内他们通过的路程之比是4∶3,根据v=,则它们的线速度之比为4∶3,故A正确;运动方向改变的角度之比为3∶2,根据ω=,则角速度之比为3∶2,故B错误;根据v=ωr可得圆周运动的半径之比为=×=,故C错误;根据a=vω得,向心加速度之比为==×=,故D错误.故选A.]
4.(多选)如图所示,皮带传动装置中,右边两轮连在一起共轴转动,图中三轮半径分别为r1=3r,r2=2r,r3=4r;A、B、C三点为三个轮边缘上的点,皮带不打滑.向心加速度分别为a1、a2、a3,则下列比例关系正确的是( )
A.=
B.=
C.=
D.=
BD [由于皮带不打滑,v1=v2,a=,故==,A错,B对;由于右边两轮共轴转动,ω2=ω3,a=rω2,==,C错,D对.]
2课时分层作业(六)
(时间:40分钟 分值:100分)
[合格考达标练]
一、选择题(本题共6小题,每小题6分,共36分)
1.关于向心加速度,下列说法正确的是( )
A.向心加速度是描述线速度大小变化快慢的物理量
B.向心加速度只改变线速度的方向,不改变线速度的大小
C.向心加速度的大小恒定,方向时刻改变
D.向心加速度是平均加速度,大小可用a=来计算
B [向心加速度只改变线速度的方向,不改变线速度的大小,它是描述线速度方向变化快慢的物理量,选项A错误,B正确;只有匀速圆周运动的向心加速度大小才恒定,选项C错误;公式a=适用于平均加速度的计算,向心加速度是瞬时加速度,D错误.]
2.做匀速圆周运动的两物体甲和乙,它们的向心加速度分别为a1和a2,且a1>a2,下列判断正确的是( )
A.甲的线速度大于乙的线速度
B.甲的角速度比乙的角速度小
C.甲的轨道半径比乙的轨道半径小
D.甲的速度方向比乙的速度方向变化快
D [由于不知甲和乙做匀速圆周运动的半径大小关系,故不能确定它们的线速度、角速度的大小关系,A、B、C错;向心加速度是表示线速度方向变化快慢的物理量,a1>a2,表明甲的速度方向比乙的速度方向变化快,D对.]
3.A、B两小球都在水平面上做匀速圆周运动,A球的轨道半径是B球轨道半径的2倍,A的转速为30
r/min,B的转速为15
r/min.则两球的向心加速度之比为( )
A.1∶1
B.2∶1
C.4∶1
D.8∶1
D [由题意知A、B两小球的角速度之比ωA∶ωB=nA∶nB=2∶1,所以两小球的向心加速度之比aA∶aB=ωRA∶ωRB=8∶1,D正确.]
4.(多选)一个小球以大小为an=4
m/s2的向心加速度做匀速圆周运动,半径r=1
m,则下列说法正确的是( )
A.小球运动的角速度为2
rad/s
B.小球做圆周运动的周期为π
s
C.小球在t=
s内通过的位移大小为
m
D.小球在π
s内通过的路程为零
AB [由a=ω2r得角速度ω==2
rad/s,A对;周期T==π
s,B对;小球在t=
s内通过圆周,位移大小为r=
m,C错;小球在π
s内通过的路程为一个圆周的长度2πr=2π
m,D错.]
5.如图所示,半径为R的圆环竖直放置,一轻弹簧一端固定在环的最高点A,一端系一带有小孔穿在环上的小球,弹簧原长为R.将小球从静止释放,释放时弹簧恰无形变,小球运动到环的最低点时速率为v,这时小球向心加速度的大小为( )
A.
B.
C.
D.
A [小球沿圆环运动,其运动轨迹就是圆环所在的圆,轨迹的圆心就是圆环的圆心,运动轨迹的半径就是圆环的半径,小球运动到环的最低点时,其向心加速度的大小为,加速度方向竖直向上.选项A正确.]
6.如图所示,两轮压紧,通过摩擦传动(不打滑),已知大轮半径是小轮半径的2倍,E为大轮半径的中点,C、D分别是大轮和小轮边缘上的一点,则E、C、D三点向心加速度大小关系正确的是( )
A.anC=anD=2anE
B.anC=2anD=2anE
C.anC==2anE
D.anC==anE
C [同轴转动,C、E两点的角速度相等,由an=ω2r,有=2,即anC=2anE;两轮边缘点的线速度大小相等,由an=,有=,即anC=anD,故选C.]
二、非选择题(14分)
7.在男女双人花样滑冰运动中,男运动员以自身为转动轴拉着女运动员做匀速圆周运动.若运动员的转速为30
r/min,女运动员触地冰鞋的线速度为4.8
m/s,求女运动员做圆周运动的角速度、触地冰鞋做圆周运动的半径及向心加速度大小.
[解析] 男女运动员的转速、角速度是相同的,
由ω=2πn得ω=2×3.14×30/60
rad/s=3.14
rad/s
由v=ωr得r==
m=1.53
m
由a=ω2r得a=3.142×1.53
m/s2=15.1
m/s2.
[答案] 3.14
rad/s 1.53
m 15.1
m/s2
[等级考提升练]
一、选择题(本题共4小题,每小题6分,共24分)
1.如图所示,半径为R的圆盘绕过圆心的竖直轴OO′匀速转动,在距轴为r处有一竖直杆,杆上用长为L的细线悬挂一小球.当圆盘以角速度ω匀速转动时,小球也以同样的角速度做匀速圆周运动,这时细线与竖直方向的夹角为θ,则小球的向心加速度大小为( )
A.ω2R
B.ω2r
C.ω2Lsin
θ
D.ω2(r+Lsin
θ)
D [小球运动的轨迹是水平面内的圆,如题图中虚线所示,其圆心是水平面与转轴OO′的交点,所以圆周运动的半径为r+Lsin
θ,由an=rω2,可知其加速度大小为ω2(r+Lsin
θ),选项D正确.]
2.一小球质量为m,用长为L的悬绳(不可伸长,质量不计)固定于O点,在O点正下方处钉有一颗光滑钉子.如图所示,将悬线沿水平方向拉直无初速度释放后,当悬线碰到钉子后的瞬间,则
( )
A.小球的角速度突然增大
B.小球的线速度突然减小到零
C.小球的向心加速度突然增大
D.小球的向心加速度不变
AC [由于悬线与钉子接触时,小球在水平方向上不受力,故小球的线速度不能发生突变,由于做圆周运动的半径变为原来的一半,由v=ωr知,角速度变为原来的两倍,A正确,B错误;由an=知,小球的向心加速度变为原来的两倍,C正确,D错误.]
3.(多选)如图所示为摩擦传动装置,B轮转动时带动A轮跟着转动,已知转动过程中轮缘间无打滑现象,下述说法中正确的是( )
A.A、B两轮转动的方向相同
B.A与B转动方向相反
C.A、B转动的角速度之比为1∶3
D.A、B轮缘上点的向心加速度之比为3∶1
BC [A、B两轮属齿轮传动,A、B两轮的转动方向相反,A错误,B正确.A、B两轮边缘的线速度大小相等,由ω=知,==,C正确.根据a=得,==,D错误.]
4.(多选)如图所示,一圆环以直径AB为轴做匀速转动,P、Q、R是环上的三点,则下列说法正确的是( )
A.向心加速度的大小aP=aQ=aR
B.任意时刻P、Q、R三点向心加速度的方向相同
C.线速度vP>vQ>vR
D.任意时刻P、Q、R三点的线速度方向均不同
BC [R、Q、P三点的轨道圆心都在轴AB上,且它们的轨道平面互相平行,因此三点的角速度相同,由于向心加速度方向也相同且指向轴AB,由an=rω2可知:aP>aQ>aR,又由v=ωr可知vP>vQ>vR,选项A错误,B、C正确;三点的线速度方向都沿轨迹的切线方向,故它们的线速度方向相同,选项D错误.]
二、非选择题(本题共2小题,共26分)
5.(12分)如图所示,压路机大轮的半径R是小轮半径r的2倍,压路机匀速行进时,大轮边缘上A点的向心加速度是0.12
m/s2,那么小轮边缘上的B点向心加速度是多少?大轮上距轴心的距离为的C点的向心加速度是多大?
[解析] 因为vB=vA,由a=,得==2
所以aB=0.24
m/s2
因为ωA=ωC,由a=ω2r,得==
所以aC=0.04
m/s2.
[答案] 0.24
m/s2 0.04
m/s2
6.(14分)如图所示,甲、乙两物体自同一水平线上同时开始运动,甲沿顺时针方向做匀速圆周运动,圆半径为R;乙做自由落体运动,当乙下落至A点时,甲恰好第一次运动到最高点B,求甲物体做匀速圆周运动的向心加速度的大小.(重力加速度为g)
[解析] 设乙下落到A点所用时间为t,则对乙,满足R=gt2得t=
这段时间内甲运动了T,即
T=
①
又由于an=ω2R=R
②
由①②得,an=π2g.
[答案] π2g
2(共52张PPT)
第六章 圆周运动
3.向心加速度
自
主
探
新
知
预
习
圆心
垂直
方向
大小
ωv
ω2r
×
×
√
×
×
合
作
攻
重
难
探
究
向心加速度的理解
向心加速度的公式及应用
当
堂
固
双
基
达
标
课
时
分
层
作
业
点击右图进入…
Thank
you
for
watching
!
答案
解析答案
考点1
考点2
定
定
W
谢谢次赏
谢谢赏