§1.2.2函数的表示法
一.教学目标
1.知识与技能
(1)明确函数的三种表示方法;
(2)会根据不同实际情境选择合适的方法表示函数;
(3)通过具体实例,了解简单的分段函数及应用.
2.过程与方法:
学习函数的表示形式,其目的不仅是研究函数的性质和应用的需要,而且是为加深理解函数概念的形成过程.
3.情态与价值
让学生感受到学习函数表示的必要性,渗透数形结合思想方法。
二.教学重点和难点
教学重点:函数的三种表示方法,分段函数的概念.
教学难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.
三.学法及教学用具
1.学法:学生通过观察、思考、比较和概括,从而更好地完成本节课的教学目标.
2.教学用具:圆规、三角板、投影仪.
四.教学思路
(一)创设情景,揭示课题.
我们在前两节课中,已经学习了函数的定义,会求函数的值域,那么函数有哪些表示的方法呢?这一节课我们研究这一问题.
(二)研探新知
1.函数有哪些表示方法呢?
(表示函数的方法常用的有:解析法、列表法、图象法三种)
2.明确三种方法各自的特点?
(解析式的特点为:函数关系清楚,容易从自变量的值求出其对应的函数值,便于用解析式来研究函数的性质,还有利于我们求函数的值域.列表法的特点为:不通过计算就知道自变量取某些值时函数的对应值、图像法的特点是:能直观形象地表示出函数的变化情况)
(三)质疑答辩,排难解惑,发展思维.
例1.某种笔记本的单价是5元,买个笔记本需要元,试用三种表示法表示函数.
分析:注意本例的设问,此处“”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.
解:(略)
注意:
①函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等;
②解析法:必须注明函数的定义域;
2
象法:是否连线;
④列④列表法:选取的自变量要有代表性,应能反映定义域的特征.
例2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级平均分表:
第一次
第二次
第三次
第四次
第五次
第六次
王
伟
98
87
91
92
88
95
张
城
90
76
88
75
86
80
赵
磊
68
65
73
72
75
82
班平均分
88.2
78.3
85.4
80.3
75.7
82.6
请你对这三位同学在高一学年度的数学学习情况做一个分析.
分析:本例应引导学生分析题目要求,做学情分析,具体要分析什么?怎么分析?借助什么工具?
解:(略)
注意:
①本例为了研究学生的学习情况,将离散的点用虚线连接,这样更便于研究成绩的变化特点:
②本例能否用解析法?为什么?
例3.画出函数的图象
解:(略)
例4.某市郊空调公共汽车的票价按下列规则制定:
(1)乘坐汽车5公里以内,票价2元;
(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算),已知两个相邻的公共汽车站间相距约为1公里,如果沿途(包括起点站和终点站)设20个汽车站,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.
分析:本例是一个实际问题,有具体的实际意义,根据实际情况公共汽车到站才能停车,所以行车里程只能取整数值.
解:(略)
注意:
①本例具有实际背景,所以解题时应考虑其实际意义;
②象例3、例4中的函数,称为分段函数.
③分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.
(四)巩固深化,反馈矫正.
(1)课本P23
练习第1,2,3题
(2)国内投寄信函(外埠),假设每封信函不超过20,付邮资80分,超过20而不超过40付邮资160分,每封(0<≤100=的信函应付邮资为(单位:分)
(五)归纳小结
理解函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数,注意分段函数的表示方法及其图象的画法。
(六)设置问题,留下悬念.
(1)课本P24习题(A组)8,9;
(2)如图,把截面半径为25cm的圆形木头锯成矩形木料,如果矩形的边长为,面积为,把表示成的函数.
【A组】
1.已知A、B两地相距150千米,某人开汽车以60千米/小时的速度从A地到达B地,在B地停留1小时后再以50千米/小时的速度返回A地,把汽车离开A地的距离x表示为时间t(小时)的函数表达式是(
D
)
(
)
A.x=60t
B.x=60t+50t
C.x=
D.x=
2.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程.
在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的是
(
B
)
3.
;若
.答案:0;4
【B组】
1.下列图中,画在同一坐标系中,函数与函数的图象只可能是
(
B
)
2.设,则
(
A
)
A.
B.0
C.
D.
【C组】
1.已知f满足f(ab)=f(a)+
f(b),且f(2)=,那么等于
(
B
)
A.
B.
C.
D.
2.某地的中国移动“神州行”卡与中国联通130网的收费标准如下表:
网络
月租费
本地话费
长途话费
甲:联通130网
12元
每分钟0.36元
每6秒钟0.06元
乙:移动“神州行”卡
无
每分钟0.6元
每6秒钟0.07元
(注:本地话费以分钟为单位计费,长途话费以6秒钟为单位计费)
若某人每月拨打本地电话时间是长途电话时间的5倍,且每月通话时间(分钟)的范围在区间(60,70)内,则选择较为省钱的网络为
(
A
)
A.甲
B.乙
C.甲乙均一样
D.分情况确定
d
d0
t0
t
O
A.
d
d0
t0
t
O
B.
d
d0
t0
t
O
C.
d
d0
t0
t
O
D.
x
y
A
x
y
B
x
y
C
x
y
D§1.2.2
映射
一.教学目标
1.知识与技能:
(1)了解映射的概念及表示方法;
(2)结合简单的对应图表,理解一一映射的概念.
2.过程与方法
(1)函数推广为映射,只是把函数中的两个数集推广为两个任意的集合;
(2)通过实例进一步理解映射的概念;
(3)会利用映射的概念来判断“对应关系”是否是映射,一一映射.
3.情态与价值
映射在近代数学中是一个极其重要的概念,是进一步学习各类映射的基础.
二.教学重点:映射的概念
教学难点:映射的概念
三.学法与教学用具
1.学法:通过丰富的实例,学生进行交流讨论和概括;从而完成本节课的教学目标;
2.教学用具:投影仪.
四.教学思路
(一)创设情景,揭示课题
复习初中常见的对应关系
1.对于任何一个实数,数轴上都有唯一的点和它对应;
2.对于坐标平面内任何一个点A,都有唯一的有序实数对()和它对应;
3.对于任意一个三角形,都有唯一确定的面积和它对应;
4.某影院的某场电影的每一张电影票有唯一确定的座位与它对应;
5.函数的概念.
(二)研探新知
1.我们已经知道,函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种对应就叫映射(板书课题).
2.先看几个例子,两个集合A、B的元素之间的一些对应关系:
(1)开平方;
(2)求正弦;
(3)求平方;
(4)乘以2.
归纳引出映射概念:
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则,使对于集合A中的任意一个元素,在集合B中都有唯一确定的元素与之对应,那么就称对应:A→B为从集合A到集合B的一个映射.
记作“:A→B”
说明:
(1)这两个集合有先后顺序,A到B的映射与B到A的映射是截然不同的,其中表示具体的对应法则,可以用多种形式表述.
(2)“都有唯一”什么意思?
包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思.
(三)质疑答辩,排难解惑,发展思维
例1.下列哪些对应是从集合A到集合B的映射?
(1)A={是数轴上的点},B=R,对应关系:数轴上的点与它所代表的实数对应;
(2)A={是平面直角坐标中的点},对应关系:平面直角坐标系中的点与它的坐标对应;
(3)A={三角形},B=:每一个三角形都对应它的内切圆;
(4)A={是新华中学的班级},对应关系:每一个班级都对应班里的学生.
思考:将(3)中的对应关系改为:每一个圆都对应它的内接三角形;(4)中的对应关系改为:每一个学生都对应他的班级,那么对应:B→A是从集合B到集合A的映射吗?
例2.在下图中,图(1),(2),(3),(4)用箭头所标明的A中元素与B中元素的对应法则,是不是映射?是不是函数关系?
A
开平方
B
A
求正弦
B
(1)
(2)
A
求平方
B
A
乘以2
B
(3)
(4)
(四)巩固深化,反馈矫正
1、画图表示集合A到集合B的对应(集合A,B各取4个元素)
已知:(1),对应法则是“乘以2”;
(2)A=>,B=R,对应法则是“求算术平方根”;
(3),对应法则是“求倒数”;
(4)<对应法则是“求余弦”.
2.在下图中的映射中,A中元素600的象是什么?B中元素的原象是什么?
A
求正弦
B
(五)归纳小结
提出问题:怎样判断建立在两个集合上的一个对应关系是否是一个映射,你能归纳出几个“标准”呢?
师生一起归纳:判定是否是映射主要看两条:一条是A集合中的元素都要有象,但B中元素未必要有原象;二条是A中元素与B中元素只能出现“一对一”或“多对一”的对应形式.
(六)设置问题,留下悬念.
1.由学生举出生活中两个有关映射的实例.
2.已知是集合A上的任一个映射,试问在值域(A)中的任一个元素的原象,是否都是唯一的?为什么?
3.已知集合从集合A到集合B的映射,试问能构造出多少映射?
3
-3
2
-2
1
-1
3
4
5
6
1
300
450
600
900
9
4
1
1
-1
2
-2
3
-3
1
2
3
4
5
6
1
2
3
1
4
9
300
450
600
900
1