第三章 概率的进一步认识 单元测试(培优卷)(原版+解析版)

文档属性

名称 第三章 概率的进一步认识 单元测试(培优卷)(原版+解析版)
格式 zip
文件大小 3.4MB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2020-08-25 14:57:29

文档简介

中小学教育资源及组卷应用平台
第三单元
概率的进一步认识(培优卷)北师大版
考试时间:120分钟
一、选择题(每小题3分,共36分)
1.(2020·安徽颍州初三期末)学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是(

A.
B.
C.
D.
【答案】C
【解析】用A,B,C分别表示给九年级的三辆车,画树状图得:
∵共有9种等可能的结果,小明与小红同车的有3种情况,
∴小明与小红同车的概率是:.
点睛:此题主要考查了用列表法或树状图求概率,解题关键是用字母或甲乙丙分别表示给九年级的三辆车,然后根据题意画树状图,再由树状图求得所有等可能的结果与小明与小红同车的情况,然后利用概率公式求解即可求得答案.
2.(2020·重庆九龙坡初三期末)在某中学的迎国庆联欢会上有一个小嘉宾抽奖的环节,主持人把分别写有“我”、“爱”、“祖”、“国”四个字的四张卡片分别装入四个外形相同的小盒子并密封起来,由主持人随机地弄乱这四个盒子的顺序,然后请出抽奖的小嘉宾,让他在四个小盒子的外边也分别写上“我”、“爱”、“祖”、“国”四个字,最后由主持人打开小盒子取出卡片,如果每一个盒子上面写的字和里面小卡片上面写的字都不相同就算失败,其余的情况就算中奖,那么小嘉宾中奖的概率为(

A.
B.
C.
D.
【答案】B
【分析】得出总的情况数和失败的情况数,根据概率公式计算出失败率,从而得出中奖率.
【解析】共有4×4=16种情况,失败的情况占3+2+1=6种,失败率为,中奖率为.
故选:B.
【点睛】本题考查了利用概率公式求概率.正确得出失败情况的总数是解答本题的关键.用到的知识点为:概率=所求情况数与总情况数之比.
3、将100个数据分成①~⑧组,如下表所示:
[]
那么第④组的频率为(

A.24
B.26
C.0.24
D.0.26
【答案】C.
【解析】根据表格中的数据,得:第4组的频数为100﹣(4+8+12+24+18+7+3)=24,其频率为24:100=0.24.故选C.
【考点】1.频数与频率;2.图表型.
4.(2020·湖南邵阳中考真题)如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为,宽为的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为(

A.
B.
C.
D.
【答案】B
【分析】本题分两部分求解,首先假设不规则图案面积为x,根据几何概率知识求解不规则图案占长方形的面积大小;继而根据折线图用频率估计概率,综合以上列方程求解.
【解析】假设不规则图案面积为x,由已知得:长方形面积为20,
根据几何概率公式小球落在不规则图案的概率为:

当事件A实验次数足够多,即样本足够大时,其频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,
综上有:,解得.故选:B.
【点睛】本题考查几何概率以及用频率估计概率,并在此基础上进行了题目创新,解题关键在于清晰理解题意,能从复杂的题目背景当中找到考点化繁为简,创新题目对基础知识要求极高.
5、下列说法正确的是(
).
A.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次
B.天气预报“明天降水概率10%,是指明天有10%的时间会下雨”
C.一种福利彩票中奖率是千分之一,则买这种彩票1000张,一定会中奖
D.连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上
【答案】D
【分析】根据概率的意义对各选项进行逐一分析即可.
【解析】A、投掷一枚质地均匀的硬币1000次,正面朝上的次数不一定是500次,故A错误;
B、天气预报“明天降水概率10%”,是指明天有10%的概率会下雨,故B错误;
C、某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,可能会中奖,故C错误;
D、连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上,故D正确.
故选:D.
【点睛】本题考查的是概率的意义,熟知一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率是解答此题的关键.
6、要估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞了50条鱼,在每条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞100条,发现只有两条鱼是刚才做了记号的鱼,假设在鱼塘内鱼均匀分布,那么估计这个鱼塘的鱼数约为(

A、5000条
B、2500条
C、1750条
D、1250条
【答案】B
【解析】鱼塘中打捞100条,只有两条鱼是做了记号的鱼,所以带记号的鱼占池塘所有鱼的2%,
所以池塘中所有鱼的条数约为50÷2%=2500条,故答案选B.
【考点】用样本估计总体.
7、某一超市在“五?一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为.小张这期间在该超市买商品获得了三次抽奖机会,则小张(
)
A.能中奖一次
B.能中奖两次
C.至少能中奖一次
D.中奖次数不能确定
【答案】D
【分析】由于中奖概率为,说明此事件为随机事件,即可能发生,也可能不发生.
【解析】
解:根据随机事件的定义判定,中奖次数不能确定故选D.
【点睛】解答此题要明确概率和事件的关系:
,为不可能事件;为必然事件;为随机事件.
8、“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是
A.
B.
C.
D.
【答案】A
【解析】图书馆,博物馆,科技馆分别记为A、B、C,画树状图如下:
共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,
所以两人恰好选择同一场馆的概率==.故选A.
【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
9、新冠疫情发生以来,为保证防控期间的口罩供应,某公司加紧转产,开设多条生产线争分夺秒赶制口罩,从最初转产时的陌生,到正式投产后达成日均生产100万个口罩的产能.不仅效率高,而且口罩送检合格率也不断提升,真正体现了“大国速度”.以下是质监局对一批口罩进行质量抽检的相关数据,统计如下:
抽检数量n/个
20
50
100
200
500
1000
2000
5000
10000
合格数量m/个
19
46
93
185
459
922
1840
4595
9213
口罩合格率
0.950
0.920
0.930
0.925
0.918
0.922
0.920
0.919
0.921
下面四个推断合理的是(

A.当抽检口罩的数量是10000个时,口罩合格的数量是9213个,所以这批口罩中“口罩合格”的概率是0.921;
B.由于抽检口罩的数量分别是50和2000个时,口罩合格率均是0.920,所以可以估计这批口罩中“口罩合格”的概率是0.920;
C.随着抽检数量的增加,“口罩合格”的频率总在0.920附近摆动,显示出一定的稳定性,所以可以估计这批口罩中“口罩合格”的概率是0.920;
D.当抽检口罩的数量达到20000个时,“口罩合格”的概率一定是0.921.
【答案】C
【分析】根据统计表中的数据和各个选项的说法可以判断是否正确,从而可以解答本题.
【解析】A、当抽检口罩的数量是10000个时,口罩合格的数量是9213个,这批口罩中“口罩合格”的概率不一定是0.921,故该选项错误;
B、由于抽检口罩的数量分别是50和2000个时,口罩合格率均是0.920,这批口罩中“口罩合格”的概率不一定是0.920,故该选项错误;
C、随着抽检数量的增加,“口罩合格”的频率总在0.920附近摆动,显示出一定的稳定性,所以可以估计这批口罩中“口罩合格”的概率是0.920,故该选项正确;
D、当抽检口罩的数量达到20000个时,“口罩合格”的概率不一定是0.921,故该选项错误.
故选:C.
【点睛】本题考查了利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答.
10.(2020·全国初三单元测试)将号码分别为1,2,3,…,9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球,号码为a,放回后乙再摸出一个球,号码为b,则使不等式成立的事件发生的概率为(

A.
B.
C.
D.
【答案】D
【分析】本题是一个等可能事件的概率,试验发生包含的事件是两次分别从袋中摸球,共有9×9种结果,满足条件的事件是使不等式a-2b+10>0成立的,即2b-a<10,列举出当当b=1,2,3,4,5,6,7,8,9时的所有的结果,得到概率.
【解析】由题意知本题是一个等可能事件的概率,
试验发生包含的事件是两次分别从袋中摸球,共有9×9=81种结果,
满足条件的事件是使不等式a-2b+10>0成立的,即2b-a<10
当b=1,2,3,4,5时,a有9种结果,共有45种结果,
当b=6时,a有7种结果;当b=7时,a有5种结果;当b=8时,a有3种结果
当b=9时,a有1种结果
∴共有45+7+5+3+1=61种结果,
∴所求的概率是,故选D.
【点睛】本题考查等可能事件的概率,在解题的过程中注意列举出所有的满足条件的事件数时,因为包含的情况比较多,又是一个数字问题,注意做到不重不漏.
11.(2018·重庆市江津实验中学校初三期末)从﹣3,﹣2,﹣1,0,1这五个数中,随机取出一个数,记为a,若a使得关于x的不等式组无解,且关于x的分式方程有整数解的概率为(  )
A.
B.
C.
D.
【答案】A
【解析】,由①得,x≤a,
由②得,x>,
可见,x取-3,-2,-1,0时,不等式组无解;
解分式方程得,x=,
当a取-3,-1,1时,分式方程有整数解,
当a取-1时,分式方程x=2是增根.
综上,a取-3时,符合题意,P=.故选A.
12、动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.6,则现年20岁的这种动物活到25岁的概率是_____.
A.0.8
B.0.75
C.0.6
D.0.48
【答案】B
【分析】首先设出统计的总动物数,再根据题意求出活到20岁的动物的数量和活到25岁的动物的数量,则可计算出现年20岁的这种动物活到25岁的概率.
【解析】设某种动物开始时的数目为a个,
活到20岁的概率为0.8,则活到20岁时数目为0.8a个,
活到25岁的概率为0.6,则活到25岁时数目为0.6a个,
所以20岁的这种动物活到25岁的概率=
=0.75.故答案为B.
【点睛】本题主要考查概率的计算,关键在于计算活到20岁的动物的数量和活到25岁的动物的数量.
二、填空题(每小题3分,共18分)
13、下列事件:①从装有1个红球和2个黄球的袋子中摸出的1个球是白球;②随意调查1位青年,他接受过九年制义务教育;③花2元买一张体育彩票,喜中500万大奖;④抛掷1个小石块,石块会下落.估计这些事件的可能性大小,并将它们的序号按从小到大排列:________.
【答案】①③②④
【解析】根据生活实际的经验,可知:
①从装有1个红球和2个黄球的袋子中摸出的1个球是白球,这个事件是不可能发生的,故可能性为0;②随意调查1位青年,他接受过九年制义务教育,这个事件是有可能事件,故可能性小于1;③花2元买一张体育彩票,喜中500万大奖,根据体彩中奖几率可知发生的可能性很小,但是不为0;④抛掷1个小石块,石块会下落,这是必然事件,故发生的的可能性为1.
故答案为①③②④.
【点睛】此题主要考查了事件发生的可能性大小,根据生活实际正确判断出事件发生的可能性大小即可,比较简单.
14.(2020·重庆第二外国语学校初三其他)如图,“中国七巧板”是由七个几何图形组成的正方形,其中1、2、3、5、7是等腰直角三角形,4是正方形,6是平形四边形.一只小虫在七巧板上随机停留,则刚好停在5号板区域的概率是_____.
【答案】
【分析】设4号板正方形的边长为1,再分别求出5号板和2号板的直角边长与斜边长,据此可知大正方形的面积为8,5号板的面积为,然后根据概率公式求解即可得.
【解析】设4号板正方形的边长为1,则5号板直角边长为1,斜边长为
3号板直角边长为1,斜边长为
2号板直角边长为2,斜边长为,则大正方形的面积为
5号板的面积为
则所求的概率为
故答案为:.
【点睛】本题考查了简单事件的概率计算,理解题意,正确求出大正方形和5号板的面积是解题关键.
15.(2020·江苏吴江初三其他)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁,现在任意取出一把钥匙去开任意一把锁,一次就能打开锁的概率是________.
【答案】.
【分析】根据题意画树状图,由树状图求得所有等可能的结果和一次就能打开锁的情况,再利用概率公式求解即可.
【解析】解:锁用A,B表示,钥匙用A,B,C,D表示,根据题意画树状图得:
∵共有8种等可能的结果,有2中情况符合条件,
∴一次就能打开锁的概率是.故答案为.
【点睛】本题考点:画树状图求概率.
16、如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是 
 .
【答案】.
【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.
【解析】如图,
∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,
∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.
故答案为:.
【点评】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.
17、如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个对角线为AC和BD的菱形,使不规则区域落在菱形内,其中AC=8m,BD=4m,现向菱形内随机投掷小石子(假设小石子落在菱形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数25%,由此可估计不规则区域的面积是_____m2.
【答案】4.
【分析】首先确定小石子落在不规则区域的概率,然后利用概率公式求得其面积即可.
【解析】∵经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数25%附近,
∴小石子落在不规则区域的概率为0.25,
∵AC=8m,BD=4m,∴面积为×8×4=16m2,
设不规则部分的面积为s,则=0.25,解得:s=4,故答案为:4.
【点睛】考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中事件发生的频率可以估计概率.
18、在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字不同外其余全部相同.现从盒子里随机取出一个小球,将该小球上的数字作为a的值.将该数字加2作为b的值,则(a,b)使得关于x的不等式组恰好有两个整数解的概率是__________.
【答案】
【分析】首先根据题意可求得:(a,b)的等可能结果,然后解不等式组求得不等式组的解集为≤x<b,所以可得(a,b)使得关于x的不等式组恰好有两个整数解的个数,利用概率公式即可求得答案.
【解析】根据题意得:(a,b)的等可能结果有:(﹣2,0),(﹣1,1),(0,2),(1,3),(2,4)共5种;
∵,解①得:x≥,解②得:x<b,∴≤x<b,
∴(a,b)使得关于x的不等式组恰好有两个整数解的有(0,2)与(1,3),
∴(a,b)使得关于x的不等式组恰好有两个整数解的概率是.
故答案为:.
【点睛】本题考查了概率公式的应用与不等式组的解法.注意概率=所求情况数与总情况数之比.
三、解答题(共46分)
19.(2019·黑龙江肇源初二期末)一个不透明的布袋中装有1个黄球和2个红球,每个球除颜色外都相同.(1)任意摸出一个球,记下颜色后放回,摇均匀再任意摸出一个球,求两次摸到球的颜色相同的概率;(2)现将n个蓝球放入布袋,搅匀后任意摸出一个球,记录其颜色后放回,重复该实验.经过大量实验后,发现摸到蓝球的频率稳定于0.7附近,求n的值.
【答案】(1))两次摸到球的颜色相同的概率为;(2)n=7.
【分析】(1)画树状图列出所有等可能结果,从中找到两次摸到球的颜色相同的结果数,再根据概率公式求解可得;
(2)根据概率公式列出关于n的方程,解之可得.
【解析】(1)画树状图如下:
由树状图知共有9种等可能结果,其中两次摸到球的颜色相同的有5种结果,
所以两次摸到球的颜色相同的概率为;
(2)根据题意,得:=0.7,解得:n=7,
经检验:n=7是原分式方程的解,所以n=7.
【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了利用频率估计概率.
20、(8分)如今很多初中生喜欢购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此某班数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A.白开水,B.瓶装矿泉水,C.碳酸饮料,D非碳酸饮料。根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题:
(1)这个班级有多少名同学?并补全条形统计图;(2)若该班同学每人每天只饮用一种饮品(每种只限一瓶,价格如下表),则该班同学每天用于饮品的人均花费是多少元?
饮品名称
白开水
瓶装矿泉水
碳酸饮料
非碳酸饮料
评价价格(元/瓶)
0
2
3
4
(3)为了养成良好的生活习惯,班主任决定在饮用白开水的5名班委干部(其中有两位班长记为A,B,其余三位记为C,D,E)中随机抽取2名班委干部作为良好习惯监督员,请用列表法或画树状图的方法求出恰好抽到两位班长的概率。
分析:(1)由B饮品的条形图中的人数与扇形图中的百分数可求得这个班级总人数;(2)考查加权平均数;(3)这相当于不放回的两步试验概型,通过列表格或画树状图即可求解.
解析:(1)15÷30%=50
答:这个班级有50名同学.(补全条形统计图略)
(2).
答:
该班同学每天用于饮品的人均花费是2.2元
(3)列表格如下:
A
B
C
D
E
A
(A,B)
(A,C)
(A,D)
(A,E)
B
(B,A)
(B,C)
(B,D)
(B,E)
C
(C,A)
(C,B)
(C,D)
(C,E)
D
(D,A)
(D,B)
(D,C)
(D,E)
E
(E,A)
(E,B)
(E,C)
(E,D)
由表格知,共有20种等可能结果,其中抽到A和B的有2种结果,
因此抽到两位班长的概率为.
【考点】统计的应用问题,中位数,列举法求概率
21.(2020·湖北荆门中考真题)如图是某商场第二季度某品牌运动服装的S号,M号,L号,XL号,XXL号销售情况的扇形统计图和条形统计图.
根据图中信息解答下列问题:
(1)求XL号,XXL号运动服装销量的百分比;(2)补全条形统计图;(3)按照M号,XL号运动服装的销量比,从M号、XL号运动服装中分别取出x件、y件,若再取2件XL号运动服装,将它们放在一起,现从这件运动服装中,随机取出1件,取得M号运动服装的概率为,求x,y的值.
【答案】(1)XL号,XXL号运动服装销量的百分比分别为15%,10%;(2)补全条形图如图所示,见解析;(3).
【分析】(1)先求出抽取的总数,然后分别求出对应的百分比即可;
(2)分别求出S、L、XL的数量,然后补全条形图即可;
(3)由销量比,则,结合概率的意义列出方程组,解方程组即可得到答案.
【解析】解:(1)抽取的总数为:(件),
∴XXL的百分比:,
XL的百分比:;
∴XL号,XXL号运动服装销量的百分比分别为15%,10%.
(2)根据题意,S号的数量:(件),
L号的数量:(件),XL号数量:(件),
补全条形图如图所示.
(3)由题意,按照M号,XL号运动服装的销量比,则,
根据概率的意义,有,∴,
解得:.
【点睛】本题考查了概率的意义,频数分布直方图、扇形统计图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
22.(2020·银川九中英才学校初一期中)杨华与季红用5张同样规格的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张.规则如下:当两张硬纸片上的图形可拼成电灯或小人时,杨华得1分;当两张硬纸片上的图形可拼成房子或小山时,季红得1分(如图2).问题:游戏规则对双方公平吗?请说明理由;若你认为不公平,如何修改游戏规则才能使游戏对双方公平?
【答案】(1)游戏对双方不公平
(2)改为:当拼成的图形是小人时杨华得3分,其余规则不变,就能使游戏对双方公平
【解析】游戏是否公平,关键要看是否游戏双方赢的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.
试题解析:(1)这个游戏对双方不公平
∵;;
;,
∴杨华平均每次得分为(分);季红平均每次得分为(分).
∵<,∴游戏对双方不公平
(2)改为:当拼成的图形是小人时杨华得3分,其余规则不变,就能使游戏对双方公平.(答案不惟一,其他规则可参照给分)
点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
23、(8分)致敬,最美逆行者!
病毒虽无情,人间有大爱,2020年,在湖北省抗击新冠病毒的战“疫”中,全国(除湖北省外)共有30个省(区、市)及军队的医务人员在党中央全面部署下,白衣执甲,前赴后继支援湖北省抗击疫情,据国家卫健委的统计数据,截至3月1日,这30个省(区、市)累计派出医务人员总数多达38478人,其中派往湖北省除武汉外的其他地区的医务人员总数为7381人.
a.全国30个省(区、市)各派出支援武汉的医务人员频数分布直方图
(数据分成6组:100≤x<500,500≤x<900,900≤x<1300,1300≤x<1700,1700≤x<2100,2100≤x<2500):
b.全国30个省(区、市)各派出支援武汉的医务人员人数在900≤x<1300这一组的是:
919,997,1045,1068,1101,1159,1179,1194,1195,1262.
根据以上信息回答问题:
(1)这次支援湖北省抗疫中,全国30个省(区、市)派往武汉的医务人员总数 
 
A.不到3万人,B.在3万人到3.5万人之间,C.超过3.5万人
(2)全国30个省(区、市)各派出支援武汉的医务人员人数的中位数是 
 ,其中医务人员人数超过1000人的省(区、市)共有 
 个.
(3)据新华网报道,在支援湖北省的医务人员大军中,有“90后”也有“00后”,他们是青春的力量,时代的脊梁.习近平总书记回信勉励北京大学援鄂医疗队全体“90后”党员中指出:“在新冠肺炎疫情防控斗争中,你们青年人同在一线英勇奋战的广大疫情防控人员一道,不畏艰险、冲锋在前、舍生忘死,澎显了青春的蓬勃力量,交出了合格答卷.”
小华在收集支援湖北省抗疫宣传资料时得到这样一组有关“90后”医务人员的数据:
C市派出的1614名医护人员中有404人是“90后”;
H市派出的338名医护人员中有103人是“90后”;
B市某医院派出的148名医护人员中有83人是“90后”.
小华还了解到除全国30个省(区、市)派出38478名医务人员外,军队派出了近四千名医务人员,合计约4.2万人.请你根据小华得到的这些数据估计在支援湖北省的全体医务人员(按4.2万人计)中,“90后”大约有多少万人?(写出计算过程,结果精确到0.1).
【答案】(1)B;(2)1021人,15;(3)90后”大约有1.2万人
【分析】(1)根据题意列式计算即可得到正确的选项;
(2)根据频数(率)分布直方图中的信息和中位数的定义即可得到结论;
(3)根据样本估计总体,可得到“90后”大约有1.2万人.
【解析】(1)这次支援湖北省抗疫中,全国30个省(区、市)派往武汉的医务人员总数为38478﹣7381=31097(人),故选B;
(2)全国30个省(区、市)各派出支援武汉的医务人员人数的中位数是(人);其中医务人员人数超过1000人的省(区、市)共有15(个);
故答案为:1021人,15;
(3)(人),答:“90后”大约有1.2万人.
【点睛】本题考查了频数(率)分布直方图,样本估计总体,熟悉相关性质是解题的关键.
24、(8分)小明和小亮正在按以下三步做游戏:
第一步:两人同时伸出一只手,小明出“剪刀”,小亮出“布”;
第二步:两人再同时伸出另一只手,小明出“石头”,小亮出“剪刀”;
第三步:两人同时随机撤去一只手,并按下述约定判定胜负:在两人各留下的一只手中,“剪刀”胜“布”,“布”胜“石头”,“石头”胜“剪刀”,同种手势不分胜负.
(1)求小亮获胜的概率;
(2)若小明想取胜,你觉得小明应留下哪种手势?为什么?
【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小亮获胜的情况,再利用概率公式即可求得答案;
(2)由小明留下剪刀手势时,可能取胜,也能不分胜负,当不会输;即可知小明应留下剪刀手势.
【解析】(1)画树状图得:
∵共有4种等可能的结果,小亮获胜的有1种情况,∴小亮获胜的概率为;
(2)小明应留下剪刀手势.理由:∵“剪刀”胜“布”,同种手势不分胜负,
∴小明留下剪刀手势时,可能取胜,也能不分胜负,当不会输;
∵“布”胜“石头”,“石头”胜“剪刀”,
∴小明留下石头手势时,可能取胜,但也能会输;∴小明应留下剪刀手势.
【考点】
列表法与树状图法.
【点评】
此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
21世纪教育网
www.21cnjy.com
精品试卷·第
2

(共
2
页)
HYPERLINK
"http://21世纪教育网(www.21cnjy.com)
"
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
第三单元
概率的进一步认识
(培优卷)北师大版
考试时间:120分钟
一、选择题(每小题3分,共36分)
1.(2020·安徽颍州初三期末)学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是(

A.
B.
C.
D.
2.(2020·重庆九龙坡初三期末)在某中学的迎国庆联欢会上有一个小嘉宾抽奖的环节,主持人把分别写有“我”、“爱”、“祖”、“国”四个字的四张卡片分别装入四个外形相同的小盒子并密封起来,由主持人随机地弄乱这四个盒子的顺序,然后请出抽奖的小嘉宾,让他在四个小盒子的外边也分别写上“我”、“爱”、“祖”、“国”四个字,最后由主持人打开小盒子取出卡片,如果每一个盒子上面写的字和里面小卡片上面写的字都不相同就算失败,其余的情况就算中奖,那么小嘉宾中奖的概率为(

A.
B.
C.
D.
3.(2020·湖南邵阳中考真题)如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为,宽为的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为(

A.
B.
C.
D.
4、将100个数据分成①~⑧组,如下表所示:
[]
那么第④组的频率为(

A.24
B.26
C.0.24
D.0.26
5、下列说法正确的是(
).
A.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次
B.天气预报“明天降水概率10%,是指明天有10%的时间会下雨”
C.一种福利彩票中奖率是千分之一,则买这种彩票1000张,一定会中奖
D.连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上
6、要估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞了50条鱼,在每条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞100条,发现只有两条鱼是刚才做了记号的鱼,假设在鱼塘内鱼均匀分布,那么估计这个鱼塘的鱼数约为(

A、5000条
B、2500条
C、1750条
D、1250条
7、某一超市在“五?一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为.小张这期间在该超市买商品获得了三次抽奖机会,则小张(
)
A.能中奖一次
B.能中奖两次
C.至少能中奖一次
D.中奖次数不能确定
8、“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是
A.
B.
C.
D.
9、新冠疫情发生以来,为保证防控期间的口罩供应,某公司加紧转产,开设多条生产线争分夺秒赶制口罩,从最初转产时的陌生,到正式投产后达成日均生产100万个口罩的产能.不仅效率高,而且口罩送检合格率也不断提升,真正体现了“大国速度”.以下是质监局对一批口罩进行质量抽检的相关数据,统计如下:
抽检数量n/个
20
50
100
200
500
1000
2000
5000
10000
合格数量m/个
19
46
93
185
459
922
1840
4595
9213
口罩合格率
0.950
0.920
0.930
0.925
0.918
0.922
0.920
0.919
0.921
下面四个推断合理的是(

A.当抽检口罩的数量是10000个时,口罩合格的数量是9213个,所以这批口罩中“口罩合格”的概率是0.921;
B.由于抽检口罩的数量分别是50和2000个时,口罩合格率均是0.920,所以可以估计这批口罩中“口罩合格”的概率是0.920;
C.随着抽检数量的增加,“口罩合格”的频率总在0.920附近摆动,显示出一定的稳定性,所以可以估计这批口罩中“口罩合格”的概率是0.920;
D.当抽检口罩的数量达到20000个时,“口罩合格”的概率一定是0.921.
10.(2020·全国初三单元测试)将号码分别为1,2,3,…,9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球,号码为a,放回后乙再摸出一个球,号码为b,则使不等式成立的事件发生的概率为(

A.
B.
C.
D.
11.(2018·重庆市江津实验中学校初三期末)从﹣3,﹣2,﹣1,0,1这五个数中,随机取出一个数,记为a,若a使得关于x的不等式组无解,且关于x的分式方程有整数解的概率为(  )
A.
B.
C.
D.
12、动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.6,则现年20岁的这种动物活到25岁的概率是_____.
A.0.8
B.0.75
C.0.6
D.0.48
二、填空题(每小题3分,共18分)
13、下列事件:①从装有1个红球和2个黄球的袋子中摸出的1个球是白球;②随意调查1位青年,他接受过九年制义务教育;③花2元买一张体育彩票,喜中500万大奖;④抛掷1个小石块,石块会下落.估计这些事件的可能性大小,并将它们的序号按从小到大排列:________.
14.(2020·重庆第二外国语学校初三其他)如图,“中国七巧板”是由七个几何图形组成的正方形,其中1、2、3、5、7是等腰直角三角形,4是正方形,6是平形四边形.一只小虫在七巧板上随机停留,则刚好停在5号板区域的概率是_____.
15.(2020·江苏吴江初三其他)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁,现在任意取出一把钥匙去开任意一把锁,一次就能打开锁的概率是________.
16、如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是 
 .
17、如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个对角线为AC和BD的菱形,使不规则区域落在菱形内,其中AC=8m,BD=4m,现向菱形内随机投掷小石子(假设小石子落在菱形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数25%,由此可估计不规则区域的面积是_____m2.
18、在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字不同外其余全部相同.现从盒子里随机取出一个小球,将该小球上的数字作为a的值.将该数字加2作为b的值,则(a,b)使得关于x的不等式组恰好有两个整数解的概率是__________.
三、解答题(共46分)
19.(2019·黑龙江肇源初二期末)一个不透明的布袋中装有1个黄球和2个红球,每个球除颜色外都相同.(1)任意摸出一个球,记下颜色后放回,摇均匀再任意摸出一个球,求两次摸到球的颜色相同的概率;(2)现将n个蓝球放入布袋,搅匀后任意摸出一个球,记录其颜色后放回,重复该实验.经过大量实验后,发现摸到蓝球的频率稳定于0.7附近,求n的值.
20、如今很多初中生喜欢购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此某班数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A.白开水,B.瓶装矿泉水,C.碳酸饮料,D非碳酸饮料。根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题:
(1)这个班级有多少名同学?并补全条形统计图;(2)若该班同学每人每天只饮用一种饮品(每种只限一瓶,价格如下表),则该班同学每天用于饮品的人均花费是多少元?
饮品名称
白开水
瓶装矿泉水
碳酸饮料
非碳酸饮料
评价价格(元/瓶)
0
2
3
4
(3)为了养成良好的生活习惯,班主任决定在饮用白开水的5名班委干部(其中有两位班长记为A,B,其余三位记为C,D,E)中随机抽取2名班委干部作为良好习惯监督员,请用列表法或画树状图的方法求出恰好抽到两位班长的概率。
21.(2020·湖北荆门中考真题)如图是某商场第二季度某品牌运动服装的S号,M号,L号,XL号,XXL号销售情况的扇形统计图和条形统计图.
根据图中信息解答下列问题:
(1)求XL号,XXL号运动服装销量的百分比;(2)补全条形统计图;(3)按照M号,XL号运动服装的销量比,从M号、XL号运动服装中分别取出x件、y件,若再取2件XL号运动服装,将它们放在一起,现从这件运动服装中,随机取出1件,取得M号运动服装的概率为,求x,y的值.
22.(2020·银川九中英才学校初一期中)杨华与季红用5张同样规格的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张.规则如下:当两张硬纸片上的图形可拼成电灯或小人时,杨华得1分;当两张硬纸片上的图形可拼成房子或小山时,季红得1分(如图2).问题:游戏规则对双方公平吗?请说明理由;若你认为不公平,如何修改游戏规则才能使游戏对双方公平?
23、(8分)致敬,最美逆行者!
病毒虽无情,人间有大爱,2020年,在湖北省抗击新冠病毒的战“疫”中,全国(除湖北省外)共有30个省(区、市)及军队的医务人员在党中央全面部署下,白衣执甲,前赴后继支援湖北省抗击疫情,据国家卫健委的统计数据,截至3月1日,这30个省(区、市)累计派出医务人员总数多达38478人,其中派往湖北省除武汉外的其他地区的医务人员总数为7381人.
a.全国30个省(区、市)各派出支援武汉的医务人员频数分布直方图
(数据分成6组:100≤x<500,500≤x<900,900≤x<1300,1300≤x<1700,1700≤x<2100,2100≤x<2500):
b.全国30个省(区、市)各派出支援武汉的医务人员人数在900≤x<1300这一组的是:
919,997,1045,1068,1101,1159,1179,1194,1195,1262.
根据以上信息回答问题:
(1)这次支援湖北省抗疫中,全国30个省(区、市)派往武汉的医务人员总数 
 
A.不到3万人,B.在3万人到3.5万人之间,C.超过3.5万人
(2)全国30个省(区、市)各派出支援武汉的医务人员人数的中位数是 
 ,其中医务人员人数超过1000人的省(区、市)共有 
 个.
(3)据新华网报道,在支援湖北省的医务人员大军中,有“90后”也有“00后”,他们是青春的力量,时代的脊梁.习近平总书记回信勉励北京大学援鄂医疗队全体“90后”党员中指出:“在新冠肺炎疫情防控斗争中,你们青年人同在一线英勇奋战的广大疫情防控人员一道,不畏艰险、冲锋在前、舍生忘死,澎显了青春的蓬勃力量,交出了合格答卷.”
小华在收集支援湖北省抗疫宣传资料时得到这样一组有关“90后”医务人员的数据:
C市派出的1614名医护人员中有404人是“90后”;
H市派出的338名医护人员中有103人是“90后”;
B市某医院派出的148名医护人员中有83人是“90后”.
小华还了解到除全国30个省(区、市)派出38478名医务人员外,军队派出了近四千名医务人员,合计约4.2万人.请你根据小华得到的这些数据估计在支援湖北省的全体医务人员(按4.2万人计)中,“90后”大约有多少万人?(写出计算过程,结果精确到0.1).
24、(8分)小明和小亮正在按以下三步做游戏:
第一步:两人同时伸出一只手,小明出“剪刀”,小亮出“布”;
第二步:两人再同时伸出另一只手,小明出“石头”,小亮出“剪刀”;
第三步:两人同时随机撤去一只手,并按下述约定判定胜负:在两人各留下的一只手中,“剪刀”胜“布”,“布”胜“石头”,“石头”胜“剪刀”,同种手势不分胜负.
(1)求小亮获胜的概率;
(2)若小明想取胜,你觉得小明应留下哪种手势?为什么?
21世纪教育网
www.21cnjy.com
精品试卷·第
2

(共
2
页)
HYPERLINK
"http://21世纪教育网(www.21cnjy.com)
"
21世纪教育网(www.21cnjy.com)