五年级下册数学讲义-第一单元 简易方程 无答案苏教版 (1)

文档属性

名称 五年级下册数学讲义-第一单元 简易方程 无答案苏教版 (1)
格式 docx
文件大小 797.7KB
资源类型 教案
版本资源 苏教版
科目 数学
更新时间 2020-08-25 18:33:05

图片预览

文档简介

五年级数学下册试题-第一单元 简易方程
学员编号:*********** 年 级:小五 课 时 数:
学员姓名:**** 辅导科目:数学 学科教师: ****
授课内容
行程类方程
工程问题方程
授课难点
1、会列出方程
2、根据题意寻找等量关系的方法来构建方程
教学重点:合理规划等量关系,设未知数、列方程
-----行程类
1、会列出方程
2、根据题意寻找等量关系的方法来构建方程
3、合理规划等量关系,设未知数、列方程
知识点1:列方程解应用题的思路:
1、审题并弄懂题目的已知条件和所求问题;
2、理清题目的数量关系;设未知数,一般是把所求的数用X表示;
3、根据数量关系列出方程;
4、解方程;
5、检验;
6、答。
基本的数量关系:
(1)路程=速度×时间 ⑵ 速度=路程÷时间 ⑶ 时间=路程÷速度
要特别注意:路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)
常用的等量关系:
1、甲、乙二人相向相遇问题
⑴甲走的路程+乙走的路程=总路程 ⑵二人所用的时间相等或有提前量
2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题
⑴甲走的路程-乙走的路程=提前量 ⑵二人所用的时间相等或有提前量
3、单人往返
⑴ 各段路程和=总路程 ⑵ 各段时间和=总时间 ⑶ 匀速行驶时速度不变
题型1:相遇问题
例1:小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟.他们同时出发,几分钟后两人相遇?
例2:小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,每小时步行4千米.两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的距离.
题型2:追及问题
例1:小轿车的速度比面包车速度每小时快6千米,小轿车和面包车同时从学校开出,沿着同一路线行驶,小轿车比面包车早10分钟到达城门,当面包车到达城门时,小轿车已离城门9千米,问学校到城门的距离是多少千米?
【巩固】已知甲乙两船的船速分别是24千米/时和20千米/时,两船先后从汉口港开出,乙比甲早出1小时,两船同时到达目的地A,问两地距离?
例2 :小张从家到公园,原打算每分种走50米.为了提早10分钟到,他把速度加快,每分钟走75米.问家到公园多远?
题型3:环形路上的行程问题
例1:在一个圆形跑道上,甲从A点,乙从B点同时出发反向而行,6分钟后两人相遇,再过4分钟甲到B点,又过8分钟两人再次相遇,甲、乙环形一周各需多少分钟?
例2::甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回).在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少?
——行程类2
4、行船问题与飞机飞行问题
⑴ 顺水速度=静水速度+水流速度 ⑵ 逆水速度=静水速度-水流速度
5、考虑车长的过桥或通过山洞隧道问题
将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。
二、环行跑道问题:
1、甲、乙两人在400米长的环形跑道上跑步,甲分钟跑240米,乙每分钟跑200米,二人同时同地同向出发,几分钟后二人相遇?若背向跑,几分钟后相遇?
2、在3时和4时之间的哪个时刻,时钟的时针与分针:⑴重合;⑵ 成平角;⑶成直角;
3、某钟表每小时比标准时间慢3分钟。若在清晨6时30分与准确时间对准,则当天中午该钟表指示时间为12时50分时,准确时间是多少?
三、行船与飞机飞行问题:
1、一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。
2、一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间的距离。
3、小明在静水中划船的速度为10千米/时,今往返于某条河,逆水用了9小时,顺水用了6小时,求该河的水流速度。
4、某船从A码头顺流航行到B码头,然后逆流返行到C码头,共行20小时,已知船在静水中的速度为7.5千米/时,水流的速度为2.5千米/时,若A与C的距离比A与B的距离短40千米,求A与B的距离。
——工程类问题
-
第二类:工程问题
工程问题的基本关系:
工作量=工作效率×工作时间 ;工作效率=工作量÷工作时间 ;工作时间=工作量÷工作效率
注意:一般情况下把总工作量设为1,完成某项任务的各工作量的和=总工作量=1
1、做某件工作,甲单独做要8小时才能完成,乙单独做要12小时才能完成,
问:① 甲做1小时完成全部工作量的几分之几?

② 乙做1小时完成全部工作量的几分之几?

③ 甲、乙合做1小时完成全部工作量的几分之几?

④ 甲做x小时完成全部工作量的几分之几?

⑤ 甲、乙合做x小时完成全部工作量的几分之几?

⑥ 甲先做2小时完成全部工作量的几分之几?

乙后做3小时完成全部工作量的几分之几?
甲、乙再合做x小时完成全部工作量的几分之几?
三次共完成全部工作量的几分之几?
结果完成了工作,则可列出方程:
2、一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,
还需要几天完成?
3、食堂存煤若干吨,原来每天烧煤4吨,用去15吨后,改进设备,耗煤量改为原来的一半,结果多烧了10天,求原存煤量.
4、一水池,单开进水管3小时可将水池注满,单开出水管4小时可将满池水放完。现对空水池先打开进水管2小时,然后打开出水管,使进水管、出水管一起开放,问再过几小时可将水池注满?
5、甲、乙两个工程队合做一项工程,乙队单独做一天后,由甲、乙两队合做两天后就完成了全部工程.已知甲队单
独做所需天数是乙队单独做所需天数的false,问甲、乙两队单独做,各需多少天?
6、一项工程300人共做, 需要40天,如果要求提前10天完成,问需要增多少人?
7、某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务?
8、一水池有一个进水管,4小时可以注满空池,池底有一个出水管,6小时可以放完满池的水.如果两水管同时打开,那么经过几小时可把空水池灌满?
9、某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?
10、某工程,甲单独完成续20天,乙单独完成续12天,甲乙合干6天后,再由乙继续完成,乙再做几天可以完成全部工程?
11、已知甲、乙二人合作一项工程,甲25天独立完成,乙20天独立完成,甲、乙二人合5天后,甲另有事,乙再单独做几天才能完成?

12、① 完成一项工程甲需要a天,乙需要b天,则二人合做需要的天数为 ( )
② 某工人原计划每天生产a个零件,现实际每天多生产b个零件,则生产m个零件提前的天数为( )。
13、一个水池安有甲乙丙三个水管,甲单独开12h注满水池,乙单独开8h注满,丙单独开24h可排掉满池的水,
如果三管同开,多少小时后刚好把水池注满水?