学习目标
能利用余角、补角的知识解决相关问题.
了解余角、补角的概念,掌握余角和补角的性质.
将一张长方形纸片,沿一个角折叠后,折痕与长方形的边形成了4个角.
思考:
1. ∠1 与∠2 有什么数量关系?
∠1+∠2 = 90°
2. ∠3与∠4有什么数量关系?
∠3+∠4 = 180°
1
2
3
4
问题引入
余角的概念
1
如果两个角的和等于90°( 直角 ),就说这两个角互为余角 ( 简称为两个角互余 ).
如图,可以说 ∠1 是 ∠2 的余角,或 ∠2 是∠1的余角,或 ∠1和 ∠2互余.
2
知识精讲
图中给出的各角,哪些互为余角?
15o
24o
66o
75o
46.2o
43.8o
针对练习
补角的概念
如果两个角的和等于180°(平角),就说这两个角互为补角 ( 简称为两个角互补 ).
如图,可以说 ∠3 是 ∠4 的补角,或 ∠4是 ∠3 的补角,或 ∠3 和 ∠4 互补.
4
3
知识精讲
图中给出的各角,哪些互为补角?
10o
30o
60o
80o
100o
120o
150o
170o
针对练习
例1 若一个角的补角等于它的余角的 4 倍,求这个角的度数.
解:设这个角为 x°,则它的补角是 ( 180-x )°,
余角是 ( 90-x )° .
根据题意,得
180-x = 4 ( 90-x ) .
解得 x = 60.
答:这个角的度数是 60 °.
典例解析
已知 ∠A 与∠B 互余,且 ∠A 的度数比∠B 度数的 3 倍还多30°,求∠B的度数.
解:设∠B的度数为x°,则 ∠A 的度数为 (3x+30)°.
根据题意得:
x + ( 3x+30 ) = 90.
解得 x=15.
故 ∠B 的度数为15°.
针对练习
例2 如图,已知O为AD上一点,∠AOC与∠AOB互补,OM,ON分别为∠AOC,∠AOB的平分线,若∠MON=40°,试求∠AOC与∠AOB的度数.
O
D
A
B
C
N
M
解:设∠AOB=x,
因为∠AOC与∠AOB互补,
则∠AOC=180°-x.
因为OM,ON分别为∠AOC,
∠AOB的平分线,
所以∠AOM= ,∠AON= .
所以
解得x=50°,则180°-x=130°.
即∠AOB=50°,∠AOC=130°.
典例解析
{5C22544A-7EE6-4342-B048-85BDC9FD1C3A}∠α
∠α的余角
∠α的补角
5°
32°
45°
77°
62°23′
x°(0<x<90)
27°37′
117°37′
85°
175°
58°
148°
45°
135°
103°
13°
(90-x)°
(180-x)°
观察可得结论:锐角的补角比它的余角大_____.
90°
填表并思考
知识精讲
余角和补角的性质
∠1 与∠2,∠3都互为补角,∠2 与∠3 的大小有什么关系?
思考:
1
2
同角 (等角) 的补角相等.
结论:
3
∠2=180°-∠1
∠3=180°-∠1
同角 (等角) 的余角相等.
类似地,可以得到:
=
知识精讲
例3 如图,点A,O,B在同一直线上,射线 OD 和射线 OE 分别平分∠AOC 和∠BOC,图中哪些角互为余角?
解:因为点A,O,B在同一直线上,
所以 ∠AOC 和 ∠BOC 互为补角.
O
A
B
C
D
E
又因为射线 OD 和射线 OE 分别平分∠AOC 和∠BOC,
所以∠COD+∠COE= ∠AOC+ ∠BOC
= (∠AOC+∠BOC ) = 90°.
所以∠COD和∠COE互为余角
同理∠AOD和∠BOE,∠AOD和∠COE,∠COD和∠BOE也互为余角.
典例解析
如图,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.
(1)∠AOD的余角是______________,∠COD的余角是_______________;
(2 )OE是∠BOC的平分线吗?请说明理由.
∠COE、∠BOE
O
A
B
C
D
E
∠COE、∠BOE
解:OE平分∠BOC
理由如下:∵∠DOE=90°,∴∠AOD+∠BOE=90°,
∴∠COD+∠COE=90°,
∴∠AOD+∠BOE=∠COD+∠COE,
∵OD平分∠AOC∴∠AOD=∠COD,
∴∠COE=∠BOE,∴OE平分∠BOC.
针对练习
1.一个角的余角是它的2倍,这个角的度数是( )
A.30° B.45° C.60° D.75°
A
2.下列说法正确的是( )
A.一个角的补角一定大于它本身
B.一个角的余角一定小于它本身
C.一个钝角减去一个锐角的差一定是一个锐角
D.一个角的余角一定小于其补角
D
达标检测
3.已知∠A与∠B互余,∠B与∠C互补,若∠A=60°,则∠C的度数是_______.
150°
4. ∠1 与 ∠2 互余,∠1 = (6x + 8)°,∠2 = (4x-8)°, 则∠1= ,∠2= .
62°
28°
5,.如图,已知∠AOB=90°, ∠AOC= ∠BOD,则与∠AOC互余的角有__________________.
∠BOC 和 ∠AOD
达标检测
6. 如图,已知∠ACB=∠CDB=90°.
(1) 图中有哪几对互余的角?
(2) 图中哪几对角是相等的角(直角除外)?为什么?
答案:∠A+∠B=90°
∠A+∠2=90°
∠1+∠B=90°
∠1+∠2=90°
答案:∠B=∠2
∠A=∠1
( 同角的余角相等 )
( 同角的余角相等 )
A
C
D
1
2
B
达标检测
同角或等角的
补角相等
同角或等角的
余角相等
互余
互补
两角间的数量关系
对应图形
性质
小结梳理