学习目标
会用一般式求二次函数的表达式.
会根据待定系数法解决关于二次函数的相关问题.
1.一次函数y=kx+b(k≠0)有几个待定系数?通常需要已知几个点的坐标求出它的表达式?
2.求一次函数表达式的方法是什么?它的一般步骤是什么?
2个
2个
待定系数法
(1)设:(表达式)
(2)代:(坐标代入)
(3)解:方程(组)
(4)还原:(写表达式)
复习回顾
问题1 (1)二次函数y=ax2+bx+c(a≠0)中有几个待定系数?需要几个抛物线上的点的坐标才能求出来?
(2)下面是我们用描点法画二次函数的图象所列表格的一部分:
x
-3
-2
-1
0
1
2
y
0
1
0
-3
-8
-15
3个
3个
知识精讲
解: 设这个二次函数的表达式是y=ax2+bx+c,把(-3,0),(-1,0),(0,-3)代入y=ax2+bx+c得
①选取(-3,0),(-1,0),(0,-3),试求出这个二次函数的表达式.
9a-3b+c=0,
a-b+c=0,
c=-3,
解得
a=-1,
b=-4,
c=-3.
∴所求的二次函数的表达式是y=-x2-4x-3.
待定系数法
步骤:
1.设:
(表达式)
2.代:
(坐标代入)
3.解:
方程(组)
4.还原:
(写解析式)
知识精讲
这种已知三点求二次函数表达式的方法叫做一般式法.
其步骤是:
①设函数表达式为y=ax2+bx+c;
②代入后得到一个三元一次方程组;
③解方程组得到a,b,c的值;
④把待定系数用数字换掉,写出函数表达式.
一般式法求二次函数表达式的方法
知识精讲
例1 已知二次函数的图象经过点(-1,-5),(0,-4)和(1,1).求这个二次函数的表达式.
解:设这个二次函数的表达式为y=ax2+bx+c.
依题意得
∴这个二次函数的表达式为y=2x2+3x-4.
a+b+c=1,
c=-4,
a-b+c=-5,
解得
b=3,
c=-4,
a=2,
典例解析
一个二次函数的图象经过 (0, 1)、(2,4)、(3,10)三点,求这个二次函数的表达式.
解: 设这个二次函数的表达式是y=ax2+bx+c,由于这个函数经过点(0, 1),可得c=1.
又由于其图象经过(2,4)、(3,10)两点,可得
4a+2b+1=4,
9a+3b+1=10,
解这个方程组,得
∴所求的二次函数的表达式是
针对练习
例2 如图,抛物线y=x2+bx+c过点A(-4,-3),与y轴交于点B,对称轴是x=-3,请解答下列问题:
(1)求抛物线的表达式;
解:(1)把点A(-4,-3)代入y=x2+bx+c
得16-4b+c=-3,c-4b=-19.
∵对称轴是x=-3,∴ =-3,
∴b=6,∴c=5,
∴抛物线的表达式是y=x2+6x+5;
典例解析
(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.
(2)∵CD∥x轴,∴点C与点D关于x=-3对称.
∵点C在对称轴左侧,且CD=8,
∴点C的横坐标为-7,
∴点C的纵坐标为(-7)2+6×(-7)+5=12.
∵点B的坐标为(0,5),
∴△BCD中CD边上的高为12-5=7,
∴△BCD的面积= ×8×7=28.
典例解析
1.如图,平面直角坐标系中,函数图象的表达式应是 .
x
y
O
1
2
-1
-2
-3
-4
3
2
1
-1
3
4
5
2.若y=ax2+bx+c,则由表格中的信息可知y关于x的函数关系式是( )
A.y=x2-4x+3 B.y=x2-3x+4
C.y=x2-3x+3 D.y=x2-4x+8
A
达标检测
3.已知抛物线y=ax2+bx+c经过(-1,0),(0,-3),(2,-3)三点.
(1)求这条抛物线的解析式;
(2)写出抛物线的开口方向、对称轴和顶点坐标.
?
达标检测
4.已知二次函数y=ax2+bx+c,其自变量x的部分取值及对应的函数值y如下表所示:
(1)求这个二次函数的解析式;
(2)写出这个二次函数图象的顶点坐标.
{5940675A-B579-460E-94D1-54222C63F5DA}x
…
-2
0
2
…
y
…
-1
1
11
…
?
达标检测
这种已知三点求二次函数表达式的方法叫做一般式法.
其步骤是:
①设函数表达式为y=ax2+bx+c;
②代入后得到一个三元一次方程组;
③解方程组得到a,b,c的值;
④把待定系数用数字换掉,写出函数表达式.
一般式法求二次函数表达式的方法
小结梳理