学习目标
了解三角形的外接圆和三角形外心的概念.
了解反证法的证明思想.
点和圆的位置关系
r
P
d
P
r
d
P
r
d
R
r
P
点P在⊙O内
d点P在⊙O上
d=r
点P在⊙O外
d>r
点P在圆环内
r≤d≤R
数形结合:
位置关系
数量关系
复习回顾
定理:
不在同一直线上的三个点确定一个圆.
有且只有
位置关系
A
B
C
D
E
G
F
●o
复习回顾
试一试: 已知△ABC,用直尺与圆规作出过A、B、C三点的圆.
A
B
C
O
复习回顾
1. 外接圆
⊙O叫做△ABC的________,
△ABC叫做⊙O的____________.
到三角形三个顶点的距离相等.
2.三角形的外心:
定义:
●O
A
B
C
外接圆
内接三角形
三角形外接圆的圆心叫做三角形的外心.
作图:
三角形三边中垂线的交点.
性质:
知识精讲
判一判:
下列说法是否正确
(1)任意的一个三角形一定有一个外接圆( )
(2)任意一个圆有且只有一个内接三角形( )
(3)经过三点一定可以确定一个圆( )
(4)三角形的外心到三角形各顶点的距离相等( )
√
×
×
√
针对练习
画一画:分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察并叙述各三角形与它的外心的位置关系.
锐角三角形的外心位于三角形内,
直角三角形的外心位于直角三角形斜边的中点,
钝角三角形的外心位于三角形外.
A
B
C
●O
A
B
C
C
A
B
┐
●O
●O
知识精讲
经过三角形的三个顶点的圆叫做三角形的外接圆;外接圆的圆心叫三角形的外心;是三角形三边中垂线的交点;三角形的外心到三角形的三个顶点的距离相等.
要点归纳
知识精讲
例1:如图,将△AOB置于平面直角坐标系中,O为原点,∠ABO=60°,若△AOB的外接圆与y轴交于点D(0,3).
(1)求∠DAO的度数;
(2)求点A的坐标和△AOB外接圆的面积.
解:(1)∵∠ADO=∠ABO=60°,
∠DOA=90°,
∴∠DAO=30°;
典例解析
(2)求点A的坐标和△AOB外接圆的面积.
(2)∵点D的坐标是(0,3),∴OD=3.
在直角△AOD中,
OA=OD·tan∠ADO= ,
AD=2OD=6,
∴点A的坐标是( ,0).
∵∠AOD=90°,∴AD是圆的直径,
∴△AOB外接圆的面积是9π.
【点睛】图形中求三角形外接圆的面积时,关键是确定外接圆的直径(或半径)长度.
典例解析
例2 如图,在△ABC中,O是它的外心,BC=24cm,O到BC的距离是5cm,求△ABC的外接圆的半径.
解:连接OB,过点O作OD⊥BC.
D
则OD=5cm,
在Rt△OBD中
即△ABC的外接圆的半径为13cm.
典例解析
思考:经过同一条直线上的三个点能作出一个圆吗?
l1
l2
A
B
C
P
如图,假设过同一条直线l上三点A、B、C可以作一个圆,设这个圆的圆心为P,那么点P既在线段AB的垂直平分线l1上,又在线段BC的垂直平分线l2上,即点P为l1与l2的交点,而l1⊥l,l2⊥l这与我们以前学过的“过一点有且只有一条直线与已知直线垂直”相矛盾,所以过同一条直线上的三点不能作圆.
知识精讲
反证法的定义
先假设命题的结论不成立,然后由此经过推理得出矛盾(常与公理、定理、定义或已知条件相矛盾),由矛盾判定假设不正确,从而得到原命题成立,这种方法叫做反证法.
反证法的一般步骤
假设命题的结论不成立
从这个假设出发,经过推理,得出矛盾
由矛盾判定假设不正确,从而肯定命题的结论正确
知识精讲
例3 求证:在一个三角形中,至少有一个内角小于或等于60°.
已知:△ABC
求证:△ABC中至少有一个内角小于或等于60°.
证明:假设 ,
则 。
∴ ,
即 .
这与 矛盾.假设不成立.
∴ .
△ABC中没有一个内角小于或等于60°
∠A>60°,∠B>60°,∠C>60°
∠A+∠B+∠C>180°
三角形的内角和为180度
△ABC中至少有一个内角小于或等于60°.
∠A+∠B+∠C>60°+60°+60°=180°
典例解析
1.判断:
(1)经过三点一定可以作圆 ( )
(2)三角形的外心就是这个三角形两边垂直平分线的交点 ( )
(3)三角形的外心到三边的距离相等 ( )
(4)等腰三角形的外心一定在这个三角形内 ( )
√
×
×
×
达标检测
2.已知:在Rt△ABC中,∠C=90°,AC=6,BC=8,则它的外接圆半径= .
5
3.如图,△ABC内接于⊙O,若∠OAB=20°,则∠C的度数是________.
70°
达标检测
3.如图,已知 Rt△ABC 中 , 若 AC=12cm,BC=5cm,求的外接圆半径.
C
B
A
O
解:设Rt△ABC 的外接圆的外心为O,连接OC,则OA=OB=OC.
∴O是斜边AB 的中点.
∵∠C=90°,AC=12cm,BC=5cm.
∴AB=13cm,OA=6.5cm.
故Rt△ABC 的外接圆半径为6.5cm.
达标检测
1. 外接圆
⊙O叫做△ABC的________,
△ABC叫做⊙O的____________.
到三角形三个顶点的距离相等.
2.三角形的外心:
定义:
●O
A
B
C
外接圆
内接三角形
三角形外接圆的圆心叫做三角形的外心.
作图:
三角形三边中垂线的交点.
性质:
小结梳理
反证法的定义
先假设命题的结论不成立,然后由此经过推理得出矛盾(常与公理、定理、定义或已知条件相矛盾),由矛盾判定假设不正确,从而得到原命题成立,这种方法叫做反证法.
反证法的一般步骤
假设命题的结论不成立
从这个假设出发,经过推理,得出矛盾
由矛盾判定假设不正确,从而肯定命题的结论正确
小结梳理