知识网络
一、事件的分类及其概念
事件
确定事件
随机事件
必然事件
不可能事件
1.在一定条件下必然发生的事件,叫做必然事件;
2.在一定条件下不可能发生的事件,叫做不可能事件;
3.在一定条件下可能发生也可能不发生的事件,叫做随机事件.
知识梳理
概率: 一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记作P(A).
二、概率的概念
0
1
事件发生的可能性越来越大
事件发生的可能性越来越小
不可能事件
必然事件
概率的值
知识梳理
三、随机事件的概率的求法
1.①当实验的所有结果不是有限个,或各种可能结果发生的可能性不相等时,我们用大量重复试验中随机事件发生的稳定频率来估计概率.
②频率与概率的关系:两者都能定量地反映随机事件可能性的大小,但频率具有随机性,概率是自身固有的性质,不具有随机性.
知识梳理
2.概率的计算公式:
一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,那么出现每一种结果的概率都是 .
如果事件A包括其中的m种可能的结果,那么事件A发生的概率
P(A)= + +…+
n
1
n
1
n
1
m个
=
n
m
知识梳理
当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为了不重不漏的列出所有可能的结果,通常采用列表法.
在所有可能情况n中,再找到满足条件的事件的个数m,最后代入公式计算.
列表法中表格构造特点:
四、列表法
一个因素所包含的可能情况
另一个因素所包含的可能情况
两个因素所组合的所有可能情况,即n
说明:如果第一个因素包含2种情况;第二个因素包含3种情况;那么所有情况n=2×3=6.
知识梳理
当一次试验中涉及2个因素或更多的因素时, 为了不重不漏地列出所有可能的结果,通常采用“树状图”.
树形图的画法:
一个试验
第一个因数
第二个
第三个
如一个试验中涉及2个或3个因数,第一个因数中有2种可能情况;第二个因数中有3种可能的情况;第三个因数中有2种可能的情况.
A
B
1
2
3
1
2
3
a
b
a
b
a
b
a
b
a
b
a
b
n=2×3×2=12
五、树状图法
知识梳理
【例1】 下列事件是随机事件的是( )
A.明天太阳从东方升起
B.任意画一个三角形,其内角和是360°
C.通常温度降到0℃以下,纯净的水结冰
D.射击运动员射击一次,命中靶心
D
事件的判断和概率的意义
1
考点解析
1.“闭上眼睛从布袋中随机地摸出1个球,恰是红球的概率是 ”的意思是( )
A.布袋中有2个红球和5个其他颜色的球
B.如果摸球次数很多,那么平均每摸7次,就有2次摸中红球
C.摸7次,就有2次摸中红球
D.摸7次,就有5次摸不中红球
B
迁移应用
2.下列事件中是必然事件的是( )
A.从一个装有蓝、白两色球的缸里摸出一个球,摸出的球是白球
B.小丹的自行车轮胎被钉子扎坏
C.小红期末考试数学成绩一定得满分
D.将油滴入水中,油会浮在水面上
D
迁移应用
【例2】 如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是( )
A. B. C. D.
C
用列举法求概率
2
考点解析
【例3】如图所示,有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b.
(1)写出k为负数的概率;
(2)求一次函数y=kx+b的图象经过二、三、四象限
的概率.
考点解析
解:(1)P(k为负数)= .
【解析】(1)因为-1,-2,3中有两个负数,故k为负数的概率为 ;
(2)由于一次函数y=kx+b的图象经过二、三、四象限时,k,b均为负数,
所以在画树形图列举出k、b取值的所有情况后,从中找出所有k、b均为负数的情况,即可得出答案.
考点解析
(2)画树状图如右:
由树状图可知,k、b的取值共有6种情况,
其中k<0且b<0的情况有2种,
∴P(一次函数y=kx+b的图象经过第二、三、四象限)= .
考点解析
3. 一个袋中装有2个黑球3个白球,这些球除颜色外,大小、形状、质地完全相同,在看不到球的情况下,随机的从这个袋子中摸出一个球不放回,再随机的从这个袋子中摸出一个球,两次摸到的球颜色相同的概率是( )
A. B. C. D.
A
迁移应用
【例4】在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )
A.频率就是概率
B.频率与试验次数无关
C.概率是随机的,与频率无关
D.随着试验次数的增加,频率一般会越来越接近概率
D
用频率估计概率
3
考点解析
【例5】在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现从中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数最有可能是( )
A.24个 B.18个 C.16个 D.6个
C
考点解析
4.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球.如果口袋中装有3个红球且摸到红球的概率为 ,那么口袋中球的总个数为_____.
解析:设口袋中球的总个数为x,则摸到红球的概率为 ,
所以x=15.
15
迁移应用
【例6】在一个不透明的口袋里分别标注2、4、6的3个小球(小球除数字外,其余都相同),另有3张背面完全一样,正面分别写有数字6、7、8的卡片.现从口袋中任意摸出一个小球,再从这3张背面朝上的卡片中任意摸出一张卡片.
(1)请你用列表或画树状图的方法,表示出所有可能出现的结果;
用概率作决策
4
考点解析
解:(1)列表如下
6
7
8
2
(6,2)
(7,2)
(8,2)
4
(6,4)
(7,4)
(8,4)
6
(6,6)
(7,6)
(8,6)
卡片
小球
共有9种等可能结果;
考点解析
(2)小红和小莉做游戏,制定了两个游戏规则:
规则1:若两次摸出的数字,至少有一次是“6”,小红赢;否则,小莉赢;
规则2:若摸出的卡片上的数字是球上数字的整数倍时,小红赢;否则,小莉赢.小红想要在游戏中获胜,她会选择哪一条规则,并说明理由.
规则1:P(小红赢)= ;
规则2:P(小红赢)=
∵ , ∴小红选择规则1.
考点解析
5.A、B两个小型超市举行有奖促销活动,顾客每购满20元就有一次按下面规则转动转盘获奖机会,且两超市奖额等同.规则是: ①A超市把转盘甲等分成4个扇形区域、B超市把转盘乙等分成3个扇形区域,并标上了数字(如图所示); ②顾客第一回转动转盘要转两次,第一次与第二次分别停止后指针所指数字之和为奇数时就获奖(若指针停在等分线上,那么重转一次,直到指针指向某一份为止).
1
1
2
2
3
3
4
甲
乙
迁移应用
解:(1)列表格如下:
{93296810-A885-4BE3-A3E7-6D5BEEA58F35}
1
2
3
4
1
2
3
4
5
2
3
4
5
6
3
4
5
6
7
4
5
6
7
8
第一回
第二回
甲转盘
共有16种等可能结果,其中中奖的有8种;
∴P(甲)=
(1)利用树形图或列表法分别求出A、B两超市顾客一回转盘获奖的概率;
迁移应用
{93296810-A885-4BE3-A3E7-6D5BEEA58F35}
1
2
3
1
2
3
4
2
3
4
5
3
4
5
6
第一回
第二回
乙转盘
∴P(乙)=
共有9种等可能结果,其中中奖的有4种;
迁移应用
(2)如果只考虑中奖因素,你将会选择去哪个超市购物?说明理由.
(2)选甲超市.理由如下:
∵P(甲)>P(乙), ∴选甲超市.
迁移应用