首页
高中语文
高中数学
高中英语
高中物理
高中化学
高中历史
高中道德与法治(政治)
高中地理
高中生物
高中音乐
高中美术
高中体育
高中信息技术
高中通用技术
资源详情
高中数学
苏教版(2019)
必修 第一册
第3章 不等式
3.3 从函数观点看一元二次方程和一元二次不等式
苏教版(2019) 高中数学 必修第一册 3.3.2 从函数观点看一元二次不等式 (课件+课时练共4份打包)
文档属性
名称
苏教版(2019) 高中数学 必修第一册 3.3.2 从函数观点看一元二次不等式 (课件+课时练共4份打包)
格式
zip
文件大小
5.8MB
资源类型
教案
版本资源
苏教版(2019)
科目
数学
更新时间
2020-09-04 11:11:22
点击下载
文档简介
课时分层作业(十四) 一元二次不等式的应用
(建议用时:40分钟)
一、选择题
1.不等式≥0的解集为( )
A.{x|-1
B.{x|-1≤x<1}
C.{x|-1≤x≤1}
D.{x|-1
B [原不等式?
∴-1≤x<1.]
2.不等式<0的解集为( )
A.{x|-1
B.{x|1
C.{x|2
D.{x|-1
A [原不等式?
∴-1
3.不等式组有解,则实数a的取值范围是( )
A.(-1,3)
B.(-∞,-1)∪(3,+∞)
C.(-3,1)
D.(-∞,-3)∪(1,+∞)
A [由题意得,a2+1
∴只须4+2a>a2+1,即a2-2a-3<0,
∴-1
4.二次不等式ax2+bx+c<0的解集为全体实数的条件是( )
A.
B.
C.
D.
D [二次不等式ax2+bx+c<0的解集为全体实数等价于二次函数y=ax2+bx+c的图象全部在x轴下方,需要开口向下,且与x轴无交点,故需要.]
5.在R上定义运算⊙:A⊙B=A(1-B),若不等式(x-a)⊙(x+a)<1对任意的实数x∈R恒成立,则实数a的取值范围为( )
A.-1
B.0
C.-
D.-
C [∵(x-a)⊙(x+a)=(x-a)(1-x-a),
又不等式(x-a)⊙(x+a)<1,
即(x-a)(1-x-a)<1对任意实数x恒成立,即x2-x-a2+a+1>0对任意实数x恒成立,
所以Δ=1-4(-a2+a+1)<0,
解得-
二、填空题
6.当x∈(1,2)时,不等式x2+mx+4<0恒成立,则m的取值范围是 .
(-∞,-5] [设y=x2+mx+4,要使x∈(1,2)时,不等式x2+mx+4<0恒成立.
则有x=1和x=2时,函数的值均为非正数,即解得m≤-5.]
7.某地每年销售木材约20万m3,每m3价格为2
400元.为了减少木材消耗,决定按销售收入的t%征收木材税,这样每年的木材销售量减少t万m3.为了既减少木材消耗又保证税金收入每年不少于900万元,则t的取值范围是 .
[3,5] [设按销售收入的t%征收木材税时,税金收入为y万元,则y=2
400××t%=60(8t-t2).
令y≥900,即60(8t-t2)≥900,解得3≤t≤5.]
三、解答题
8.若不等式(1-a)x2-4x+6>0的解集是{x|-3
(1)解不等式2x2+(2-a)x-a>0;
(2)b为何值时,ax2+bx+3≥0的解集为R?
[解] (1)由题意知1-a<0,且-3和1是方程(1-a)x2-4x+6=0的两根,
∴解得a=3.
∴不等式2x2+(2-a)x-a>0,
即为2x2-x-3>0,解得x<-1或x>,
∴所求不等式的解集为.
(2)ax2+bx+3≥0,即3x2+bx+3≥0,
若此不等式解集为R,则Δ=b2-4×3×3≤0,
∴-6≤b≤6.
9.某地区上年度电价为0.8元/kw·h,年用电量为a
kw·h.本年度计划将电价降低到0.55元/kw·h至0.75元/kw·h之间,而用户期望电价为0.4元/kw·h.经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k).该地区电力的成本价为0.3元/kw·h.
(1)写出本年度电价下调后,电力部门的收益y与实际电价x的函数关系式;
(2)设k=0.2a,当电价最低定为多少时仍可保证电力部门的收益比上年度至少增长20%?
[解] (1)设下调后的电价为x元/千瓦时,依题意知,用电量增至+a,电力部门的收益为
y=(x-0.3)(0.55≤x≤0.75).
(2)依题意,有
整理,得
解此不等式,得0.60≤x≤0.75.
∴当电价最低定为0.60元/kw·h时,仍可保证电力部门的收益比上年度至少增长20%.
1.下列选项中,使不等式x<
A.(-∞,-1)
B.(-1,0)
C.(0,1)
D.(1,+∞)
A [法一:取x=-2,知符合x<
法二:由题知,不等式等价于·<0,即<0,从而<0,解得x<-1,选A.]
2.函数y=的定义域为R,则实数k的取值范围为( )
A.(0,1)
B.[1,+∞)
C.[0,1]
D.(-∞,0]
C [kx2-6kx+(k+8)≥0恒成立,
当k=0时,满足.
当k≠0时,?0
综上,0≤k≤1.]
3.若关于x的不等式>0的解集为(-∞,-1)∪(4,+∞),则实数a= .
4 [∵(x-a)(x+1)>0与>0同解,∴(x-a)(x+1)>0的解集为(-∞,-1)∪(4,+∞),
∴4,-1是(x-a)(x+1)=0的根,∴a=4.]
4.若关于x的不等式x2-4x≥m对任意x∈[0,1]恒成立,则实数m的取值范围是 .
(-∞,-3] [设y=x2-4x=(x-2)2-4,
∴该函数在
[0,1]上y随着x的增大而减小,
∴当x=1时,函数取得最小值-3,
∴要使x2-4x≥m对于任意x∈[0,1]恒成立,则需m≤-3.]
5.设不等式mx2-2x-m+1<0对于满足|m|≤2的一切m的值都成立,求x的取值范围.
[解] 原不等式可化为(x2-1)m-(2x-1)<0.
令y=(x2-1)m-(2x-1),其中m∈[-2,2],
则原命题等价于关于m的一次函数(x2-1≠0时)或常数函数(x2-1=0时)在m∈[-2,2]上的函数值恒小于零.
(1)当x2-1=0时,由y=-(2x-1)<0得x=1.
(2)当x2-1>0时,y在[-2,2]上随m的增大而增大,要使y<0在[-2,2]上恒成立,
只需
解得1<x<.
(3)当x2-1<0时,y在[-2,2]上是随m的增大而减小,要使y<0在[-2,2]上恒成立,
只需
解得<x<1.
综合(1)(2)(3),得<x<.
6课时分层作业(十三) 一元二次不等式及其解法
(建议用时:40分钟)
一、选择题
1.不等式9x2+6x+1≤0的解集是( )
A.
B.
C.?
D.
D [(3x+1)2≤0,
∴3x+1=0,∴x=-.]
2.若集合A={x|(2x+1)(x-3)<0},B={x|x∈N
,x≤5},则A∩B等于( )
A.{1,2,3}
B.{1,2}
C.{4,5}
D.{1,2,3,4,5}
B [∵(2x+1)(x-3)<0,∴-
又x∈N
且x≤5,则x=1,2.]
3.若0
A.
B.
C.
D.
D [0
4.一元二次方程ax2+bx+c=0的两根为-2,3,a<0,那么ax2+bx+c>0的解集为( )
A.{x|x>3或x<-2}
B.{x|x>2或x<-3}
C.{x|-2
D.{x|-3
C [由题意知,-2+3=-,-2×3=,∴b=-a,c=-6a,
∴ax2+bx+c=ax2-ax-6a>0,
∵a<0,∴x2-x-6<0,
∴(x-3)(x+2)<0,∴-2
5.在R上定义运算“⊙”:a⊙b=ab+2a+b,则满足x⊙(x-2)<0的实数x的取值范围为( )
A.0<x<2
B.-2<x<1
C.x<-2或x>1
D.-1<x<2
B [根据给出的定义得,x⊙(x-2)=x(x-2)+2x+(x-2)=x2+x-2=(x+2)(x-1),又x⊙(x-2)<0,则(x+2)(x-1)<0,故不等式的解集是-2<x<1.]
二、填空题
6.不等式-x2-3x+4>0的解集为 .
{x|-4<x<1} [由-x2-3x+4>0得x2+3x-4<0,解得-4
7.若关于x的不等式-x2+2x>mx的解集是{x|0<x<2},则实数m的值是 .
1 [将原不等式化为x2+(m-2)x<0,即x(x+2m-4)<0,故0,2是对应方程x(x+2m-4)=0的两个根,代入得m=1.]
8.已知集合A={x|3x-2-x2<0},B={x|x-a<0},且B?A,则a的取值范围为 .
{a|a≤1} [A={x|3x-2-x2<0}={x|x2-3x+2>0}={x|x<1或x>2},B={x|x
若B?A,如图,则a≤1.
]
三、解答题
9.求下列不等式的解集:
(1)x2-5x+6>0;
(2)-x2+3x-5>0.
[解] (1)方程x2-5x+6=0有两个不等实数根x1=2,x2=3,又因为函数y=x2-5x+6的图象是开口向上的抛物线,且抛物线与x轴有两个交点,分别为(2,0)和(3,0),其图象如图(1).根据图象可得不等式的解集为{x|x>3或x<2}.
(2)原不等式可化为x2-6x+10<0,对于方程x2-6x+10=0,因为Δ=(-6)2-40<0,所以方程无解,又因为函数y=x2-6x+10的图象是开口向上的抛物线,且与x轴没有交点,其图象如图(2).根据图象可得不等式的解集为?.
10.解关于x的不等式x2-(3a-1)x+(2a2-2)>0.
[解] 原不等式可化为
[x-(a+1)][x-2(a-1)]>0,
讨论a+1与2(a-1)的大小,
(1)当a+1>2(a-1),即a<3时,x>a+1或x<2(a-1).
(2)当a+1=2(a-1),即a=3时,x≠4.
(3)当a+1<2(a-1),即a>3时,x>2(a-1)或x
综上:当a<3时,解集为{x|x>a+1或x<2(a-1)},
当a=3时,解集为{x|x≠4},
当a>3时,解集为{x|x>2(a-1)或x
1.不等式mx2-ax-1>0(m>0)的解集可能是( )
A.
B.R
C.
D.?
A [因为Δ=a2+4m>0,所以函数y=mx2-ax-1的图象与x轴有两个交点,又m>0,所以原不等式的解集不可能是B、C、D,故选A.]
2.关于x的不等式ax2+bx+2>0的解集为{x|-1
0的解集为( )
A.{x|-2
B.{x|x>2或x<-1}
C.{x|x>1或x<-2}
D.{x|x<-1或x>1}
C [∵ax2+bx+2>0的解集为{x|-1
∴解得
∴bx2-ax-2>0,即x2+x-2>0,
解得x>1或x<-2.]
3.已知不等式ax2-bx-1≥0的解集是,则不等式x2-bx-a<0的解集是 .
{x|2<x<3} [由题意知-,-是方程ax2-bx-1=0的根,且a<0,由根与系数的关系,得
+=,×=-,解得a=-6,b=5,∴不等式x2-bx-a<0,即为x2-5x+6<0的解集为{x|2<x<3}.]
4.设不等式x2-2ax+a+2≤0的解集为A,若A?{x|1≤x≤3},则a的取值范围为 .
-1<a≤ [设y=x2-2ax+a+2,因为不等式x2-2ax+a+2≤0的解集为A,且A?{x|1≤x≤3},
所以对于方程x2-2ax+a+2=0.
若A=?,则Δ=4a2-4(a+2)<0,
即a2-a-2<0,解得-1<a<2.
若A≠?,
则
即所以2≤a≤.
综上,a的取值范围为-1<a≤.]
5.已知M是关于x的不等式2x2+(3a-7)x+3+a-2a2<0的解集,且M中的一个元素是0,求实数a的取值范围,并用a表示出该不等式的解集.
[解] 原不等式可化为(2x-a-1)(x+2a-3)<0,
由x=0适合不等式得(a+1)(2a-3)>0,
所以a<-1或a>.
若a<-1,则-2a+3-=(-a+1)>5,
所以3-2a>,
此时不等式的解集是;
若a>,由-2a+3-=(-a+1)<-,
所以3-2a<,
此时不等式的解集是.
综上,当a<-1时,原不等式的解集为,当a>时,原不等式的解集为.
6
点击下载
同课章节目录
第1章 集合
1.1 集合的概念与表示
1.2 子集、全集、补集
1.3 交集、并集
第2章 常用逻辑用语
2.1 命题、定理、定义
2.2 充分条件、必要条件、冲要条件
2.3 全称量词命题与存在量词命题
第3章 不等式
3.1 不等式的基本性质
3.2 基本不等式
3.3 从函数观点看一元二次方程和一元二次不等式
第4章 指数与对数
4.1 指数
4.2 对数
第5章 函数概念与性质
5.1 函数的概念和图象
5.2 函数的表示方法
5.3 函数的单调性
5.4 函数的奇偶性
第6章 幂函数、指数函数和对数函数
6.1 幂函数
6.2 指数函数
6.3 对数函数
第7章 三角函数
7.1 角与弧度
7.2 三角函数概念
7.3 三角函数的图象和性质
7.4 三角函数应用
第8章 函数应用
8.1 二分法与求方程近似解
8.2 函数与数学模型
点击下载
VIP下载