11.3 角的平分线的性质(第1课时)教学设计
一、教学分析
1.教学内容分析
本节课是新人教版教材《数学》八年级上册第11.3节第一课时内容,是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的.内容包括角平分线的作法、角平分线的性质及初步应用.作角的平分线是基本作图,角平分线的性质为证明线段或角相等开辟了新的途径,体现了数学的简洁美,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础.因此,本节内容在数学知识体系中起到了承上启下的作用.同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律.
2.教学对象分析
刚进入初二的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导.根据学生的认知特点和接受水平,我把第一课时的教学任务定为:掌握角平分线的画法及会用角平分线的性质定理解题,同时为下节判定定理的学习打好基础.
3.教学环境分析
利用多媒体技术可以方便地创设、改变和探索某种数学情境,在这种情境下,通过思考和操作活动,研究数学现象的本质和发现数学规律.根据如今各学校实际教学环境及本节课的实际教学需要,我选择电脑及投影仪多媒体教学系统辅助教学,另外借助一定的教学软件,如“几何画板”,“Powerpoint”等将有关教学内容用动态的方式展示出来,让学生能够进行直观地观察,并留下清晰的印象,从而发现变化之中的不变.这样,吸引了学生的注意力,激发了学生学习数学的兴趣,有利于学生对知识点的理解和掌握.
二、教学目标
1、知识与技能:
(1)掌握用尺规作已知角的平分线的方法.
(2)理解角的平分线的性质并能初步运用.
2、数学思考:通过让学生经历观察演示,动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力.
3、解决问题:
(1)初步了解角的平分线的性质在生产、生活中的应用.
(2)培养学生的数学建模能力.
4、情感与态度:充分利用多媒体教学优势,培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情.
三、教学重点、难点
本节课的教学重点为:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用.难点是:(1)对角平分线性质定理中点到角两边的距离的正确理解;(2)对于性质定理的运用(学生习惯找三角形全等的方法解决问题而不注重利用刚学过的定理来解决,结果相当于对定理的重复证明)
教学难点突破方法:(1)利用多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理正确使用;(2)通过对比教学让学生选择简单的方法解决问题;(3)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习.
四、教学过程
(一)教学流程设计
教学流程图
(二)教学环节设计
1.创设情景
[教学内容1]
生活中有很多数学问题:
小明家居住在通州区一栋居民楼的一楼,刚好位于一条暖气和天然气管道所成角的平分线上的P点,要从P点建两条管道,分别与暖气管道和天然气管道相连.
问题1:怎样修建管道最短?
问题2:新修的两条管道长度有什么关系,画来看一看.
[整合点1]利用多媒体渲染气氛,激发情感.
[教学方法手段]
教师利用多媒体展示,引领学生进入实际问题情景中,利用信息技术既生动展示问题,同时又通过图片让学生更身临其境般感受生活。学生动手画图,猜测并说出观察到的结论.引导学生了解角的平分线有很多未知的性质需我们来解开,并板书课题.
[设计意图]
依据新课程理念,教师要创造性地使用教材,作为本课的第一个引例,从学生的生活出发,激发学生的学习兴趣,培养学生运用数学知识,解决实际问题的意识,复习了点到直线的距离这一概念,为后续的学习作好知识上的储备.
2.探究体验
[教学内容2]
要研究角的平分线的性质我们必须会画角的平分线,工人师傅常用如图所示的简易平分角的仪器来画角的平分线.出示仪器模型,介绍仪器特点(有两对边相等),将A点放在角的顶点处,AB和AD沿角的两边放下,过AC画一条射线AE,AE即为∠BAD的平分线.
[教学方法手段]
学生口述,用三角形全等的方法证明AE是∠BAD的平分线.
多媒体展示实验过程.
[设计意图]
体验从生产生活中分离,抽象出数学模型,并主动运用所学知识来解决问题.
从上面的探究中可以得到作已知角的平分线的方法.
[教学内容3]
把简易平分角的仪器放在角的两边时,平分角的仪器两边相等,从几何作图角度怎么画?BC=DC,从几何作图角度怎么画?
[教学方法手段]
教师提问,学生分组交流,归纳角的平分线的作法.
[设计意图]
从实验操作中获得启示,明确几何作图的基本思路和方法.
[教学内容4]
作一个平角∠AOB的平分线OC,反向延长OC得到直线CD,请学生说出直线CD与AB的位置关系.并在此基础上再作出一个45 的角.
[教学方法手段]
学生独立作图思考,发现直线AB与CD垂直.
[设计意图]
通过作特殊角的平分线,让学生掌握过直线上一点作已知直线的垂线及特殊角的方法,达到培养学生的发散思维的目的.
[教学内容5]
让学生用纸剪一个角,把纸片对折,使角的两边叠合在一起,把对折后的纸片继续折一次,折出一个直三角形(使第一次的折痕为斜边),然后展开,观察两次折叠形成的三条折痕.
问题1:第一次的折痕和角有什么关系?为什么?
问题2:第二次折叠形成的两条折痕与角的两边有何关系,它们的长度有何关系?
[教学方法手段]
学生动手剪纸,折叠,教师在多媒体上演示折叠过程.学生观察思考后,在班上交流:第一次折痕是角的平分线,第二次的折痕是角平分线上的点到两边的距离,它们的长度相等.
[设计意图]
培养学生的动手操作能力和观察能力,为下面进一步揭示角平分线的性质作好铺垫.
[教学内容6]
如图:按照折纸的顺序画出角及折纸形成的三条折痕.让学生分组讨论、交流,再利用几何画板软件验证结论,并用文字语言阐述得到的性质.(角的平分线上的点到角两边的距离相等)
结合图形写出已知,求证,分析后写出证明过程.教师归纳,强调定理的条件和作用.
[整合点2]利用多媒体直观优势,突破教学难点.
[教学方法手段]
教师用文字语言叙述得到的结论.引导学生结合图形写出已知、求证,分析后写出证明过程,并利用实物投影展示.
证明后,教师强调经过证明正确的命题可作为定理.同时强调文字命题的证明步骤.
[设计意图]
经历实践→猜想→证明→归纳的过程,符合学生的认知规律,尤其是对于结论的验证,信息技术在此体现其不可替代性,从而把学生的直观体验上升到理性思维.
3.合作交流
[教学内容7]
判断正误,并说明理由:
(1)如图1,P在射线OC上,PE⊥OA,PF⊥OB,则PE=PF.
(2)如图2,P是∠AOB的平分线OC上的一点,E、F分别在OA、OB上,则PE=PF.
(3)如图3,在∠AOB的平分线OC上任取一点P,若P到OA的距离为3cm,则P到OB的距离边为3cm.
[教学方法手段]
用多媒体展示判断题 ,学生独立思考完成,并请学生举手发表见解,教师予以肯定、鼓励.
[设计意图]
让学生通过辨析来理解和巩固角平分线的性质定理.
[教学内容8]
让学生运用本节课所学的知识回答课前引例中的问题:
问题:引例中两条管道的长度有什么关系?理由是什么?
[教学方法手段]
再次展示引例情景,用抢答的形式请同学们举手回答.
[设计意图]
让学生体会生活中蕴含数学知识,数学知识又能解决生活中的问题,感受数学的价值,让人人学到有用的数学.
[教学内容9]
例题讲解
例1 如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别是E,F.
求证:EB=FC.
变题1:如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F 在AC上,且BD=DF,求证:CF=EB.
变题2:如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,BC=8,BD=5,求DE.
[整合点3]多媒体的运用,促进了课堂教学方法与模式的变革.
[教学方法手段]
教师用多媒体展示问题,学生观察识图,独立思考,并且在小组内讨论交流,找出证明思路,再鼓励学生通过实物投影展示自己的证明过程,教师点评一题多变及一题多解.
[设计意图]
为突出本节课重点、突破难点而设计的一项活动.让学生运用性质解决数学问题,通过利用多媒体对一些边进行变色,提醒学生直接运用定理,不要仍旧去找全等三角形.同时通过信息技术方便进行一题多解及一题多变研究,更好的拓展学生解题思路及形成知识运用能力.两道变题同时展示,符合高效课堂要求.
通过学生观察识图、独立思考、小组讨论,培养学生合作交流的意识.
例2 已知:如图,△ABC的角平分线BM、CN相交于点P.
求证:点P到三边AB、BC、CA的距离相等.
[教学方法手段]
限时让学生独立思考分析,然后交流证题思路,再通过多媒体展示一般证明过程.
[设计意图]
通过问题的解决,帮助学生更好的理解角平分线的性质,并达到能熟练运用的程度.
4.评价反思
[教学内容10]
1、这节课你有哪些收获,还有什么困惑?
2、通过本节课你了解了哪些思考问题的方法?
[教学方法手段]
教师让学生畅谈本节课的收获与体会.
学生归纳、梳理交流本节课所获得的知识技能与情感体验.
[设计意图]
通过引导学生自主归纳,调动学生的主动参与意识,锻炼学生归纳概括与表达能力.
[教学内容11]
作业
必做题:教材第22页第1、2、3题
选做题:教材第23页第6题
[教学方法手段]
教师布置作业,学生独立完成.
[设计意图]
设置必做题的目的是巩固本节课应知应会的内容,面向全体学生,人人必须完成.选做题要求学生根据个人的实际情况尽力完成,使学有余力的学生得到提高,达到“不同的人得到不同的发展”的目的.
五、补充说明
(一)板书设计:
(二)时间安排:
创设情景约4分钟,探究体验约13分钟,合作交流约18分钟,评价反思约6分钟,机动时间约4分钟.
(三)教学设计说明:
本节课设计了四个环节,环环相扣,三个整合点,层层深入,将信息技术与教学进行有机整合,充分调动学生的自主探究与合作交流,教师注意适时的点拔引导,学生的主体地位和教师的主导作用的得以充分体现,切实能够达到发展思维、提升能力的根本目的,能够较好地实现教学目标,也使课标理念能够很好地得到落实.
开始
学生画图交流归纳
观察 解释作图原理并证明
交流归纳角平分线画法
PPT
激趣、设疑引入
总结角平分线尺规作图方法
PPT
作平角的平分线
折纸探索角平分线的性质
PPT
介绍平分角仪器用法
PPT
验证结论
学生证明
介绍性质 强调定理
PPT
合作交流 巩固知识
PPT
合作交流
实物投影
一题多解 一题多变
PPT
巩固重点
教师总结
学生小结 学习体会
布置作业
结束
A
O
B
P
E
F
图2
图3
A
O
B
P
E
A
O
B
P
E
F
图1
A
F
C
D
B
E
A
F
C
D
B
E
A
B
C
P
M
N
11.3 角的平分线的性质
1、角的平分线的作法. 活动6例题
2、角的平分线的性质. 布置作业
PAGE
1(共33张PPT)
角的平分线的性质
新人教版
八年级 上册
(第1课时)
开始
学生画图交流归纳
观察 解释作图原理并证明
交流归纳角平分线画法
PPT
激趣、设疑引入
总结角平分线尺规作图方法
PPT
作平角的平分线
折纸探索角平分线的性质
PPT
介绍平分角仪器用法
PPT
验证结论
学生证明
介绍性质 强调定理
PPT
合作交流 巩固知识
PPT
合作交流
实物投影
一题多解 一题多变
PPT
巩固重点
教师总结
学生小结 学习体会
布置作业
结束
教学流程图
一、教学背景的分析
二、教学目标的确定
三、教学方法与手段的选择
四、教学过程的设计
五、补充说明
一、教学背景的分析
1.教学内容分析
本节课是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的.内容包括角平分线的作法、角平分线的性质及初步应用.作角的平分线是基本作图,角平分线的性质为证明线段或角相等开辟了新的途径,体现了数学的简洁美,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础.因此,本节内容在数学知识体系中起到了承上启下的作用.同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律.
2.教学对象分析
刚进入初二的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导.
一、教学背景的分析
3.教学环境分析
利用多媒体技术可以方便地创设、改变和探索某种数学情境,在这种情境下,通过思考和操作活动,研究数学现象的本质和发现数学规律.
本节课的教学重点为:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用.难点是:(1)对角平分线性质定理中点到角两边的距离的正确理解;(2)对于性质定理的运用(学生习惯找三角形全等的方法解决问题而不注重利用刚学过的定理来解决,结果相当于对定理的重复证明)
(1)利用多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理正确使用;(2)通过对比教学让学生选择简单的方法解决问题;(3)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习.
突破方法
一、教学背景的分析
4.教学重点、难点
1.知识与技能
掌握用尺规作已知角的平分线的方法.
理解角的平分线的性质并能初步运用.
2.数学思考
通过让学生经历观察演示,动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力.
二、教学目标的确定
3.解决问题
初步了解角的平分线的性质在生产、生活中的应用.
培养学生的数学建模能力.
4.情感与态度
充分利用多媒体教学优势,培养学生探究问题的兴趣,增强解决问题的信心,获得解决 问题的成功体验,激发学生应用数学的热情.
二、教学目标的确定
1.教学方法
本节课我坚持“教与学、知识与能力的辩证统一”和“使每个学生都得到充分发展”的原则,采用引导发现法、主动探究法、讲授教学法,指导学生“动手操作,合作交流,自主探究”.鼓励学生多思、多说、多练,坚持师生间的多向交流,努力做到教法、学法的最优组合.
三、教学方法与手段的选择
2.教学手段
根据本节课的实际教学需要,我选择电脑及投影仪多媒体教学系统教学,另外借助一定的教学软件,如“几何画板”,“Powerpoint”等将有关教学内容用动态的方式展现出来,让学生能够进行直观地观察,并留下清晰的印象,从而发现变化之中的不变.
三、教学方法与手段的选择
探究体验
评价反思
合作交流
创设情境
布置作业
(一)教学流程设计
四、教学过程设计
四、教学过程设计
1.创设情景[教学内容1][整合点1]
生活中有很多数学问题:
小明家居住在通州区一栋居民楼的一楼,刚好位于一条暖气和天然气管道所成角的平分线上的P点,要从P点建两条管道,分别与暖气管道和天然气管道相连.
问题1:怎样修建管道最短?问题2:新修的两条管道长度有什么关系,画来看看.
(二)教学环节设计
[设计意图]
渲染气氛,激发情感。依据新课程理念,教师要创造性地使用教材,作为本课的第一个引例,从学生的生活出发,激发学生的学习兴趣,培养学生运用数学知识,解决实际问题的意识,复习点到直线的距离这一概念,为后续的学习作好知识上的储备.
.
P
暖气
天然气
四、教学过程设计
2.探究体验[教学内容2]
要研究角的平分线的性质我们必须会画角的平分线,工人师傅常用如图所示的简易平分角的仪器来画角的平分线.出示仪器模型,介绍仪器特点(有两对边相等),将A点放在角的顶点处,AB和AD沿角的两边放下,过AC画一条射线AE,AE即为∠BAD的平分线.
[设计意图]
帮助学生体验从生产生活中分离,抽象出数学模型,并主动运用所学知识来解决问题.
从上面的探究中可以得到作已知角的平分线的方法.
(二)教学环节设计
B
A
·
·
·
·
E
D
C
四、教学过程设计
[教学内容3]
把简易平分角的仪器放在角的两边时,平分角的仪器两边相等,从几何作图角度怎么画?BC=DC,从几何作图角度怎么画?
[设计意图]
根据画图过程,从实验操作中获得启示,明确几何作图的基本思路和方法,师生交流并归纳.
(二)教学环节设计
B
A
·
·
·
·
D
C
四、教学过程设计
[教学内容3]角平分线的画法:
(二)教学环节设计
(2)分别以M,N为圆心.大于MN一半的长为半径作弧.两弧在∠AOB的内部交于C.
(3)作射线,
则射线OC即为所求
A
B
O
M
N
C
[设计意图]
教师先在黑板上示范作图,再利用
多媒体演示作图过程及画法,加深
印象,并强调尺规作图的规范性.
(1)以O为圆心,适当长为半径作弧,交OA于M,交OB于N.
四、教学过程设计
[教学内容3]
想一想:为什么OC是角平分线呢?
(二)教学环节设计
已知:OM=ON,MC=NC.
求证:OC平分∠AOB.
证明:连接CM,CN
在△OMC和△ONC中,
OM=ON,
MC=NC,
OC=OC,
∴ △OMC≌△ONC
(SSS)
∴∠MOC=∠NOC
即:OC平分∠AOB
A
B
M
N
C
O
[设计意图]
利用三角形全等证明角平分线,进一步明确命题的题设与结论,熟悉几何证明过程.
四、教学过程设计
[教学内容4]
作一个平角∠AOB的平分线OC,反向延长OC得到直线CD,请学生说出直线CD与AB的位置关系.
在此基础上,再作出一个45 的角.
[设计意图]
通过作特殊角的平分线,让学生掌握过直线上一点作已知直线的垂线及作特殊角的方法.达到培养学生的发散思维的目的.
(二)教学环节设计
.
O
A
B
C
D
四、教学过程设计
[教学内容5]
让学生用纸剪一个角,把纸片对折,使角的两边叠合在一起,把对折后的纸片继续折一次,折出一个直三角形(使第一次的折痕为斜边),然后展开,观察两次折叠形成的三条折痕.
问题1:第一次的折痕和角有什么关系?为什么?
问题2:第二次折叠形成的两条折痕与角的两边有何关系,它们的长度有何关系?
[设计意图]
培养学生的动手操作能力和观察能力,为下面进一步揭示角平分线的性质做好铺垫.
(二)教学环节设计
四、教学过程设计
[教学内容6][整合点2]直观优势,突破难点
如图:按照折纸的顺序画出角及折纸形成的三条折痕.让学生分组讨论、交流,再利用几何画板软件验证结论,并用文字语言阐述得到的性质.(角的平分线上的点到角两边的距离相等)
结合图形写出已知,求证,分析后写出证明过程.教师归纳,强调定理的条件和作用.
[设计意图]
经历实践→猜想→证明→归纳的过程,符合学生的认知规律,尤其是对于结论的验证,信息技术在此体现其不可替代性,从而更利于学生的直观体验上升到理性思维.
(二)教学环节设计
四、教学过程设计
[教学内容6] [整合点2]
猜想:角平分线上的点到角的两边的距离相等
(二)教学环节设计
题设:一个点在一个角的平分线上
结论:它到角的两边的距离相等
已知:OC是∠AOB的平分线,点P在OC上,PD ⊥OA ,PE ⊥OB,垂足分别是D、E.求证:PD=PE.
[设计意图]
引导学生结合图形写出已知、求证,分析后写出证明过程,并利用实物投影进行展示 .强调证明过的命题可作为定理直接使用.
四、教学过程设计
3.合作交流[教学内容7]
判断正误,并说明理由:
(1)如图1,P在射线OC上,PE⊥OA,PF⊥OB,则PE=PF.
(2)如图2,P是∠AOB的平分线OC上的一点,E、F分别在OA、OB上,则PE=PF.
[设计意图]
让学生通过辨析来理解和巩固角平分线的性质定理.
(二)教学环节设计
A
O
B
P
E
F
A
O
B
P
E
F
图2
图3
A
O
B
P
E
图1
(3)如图3,在∠AOB的平分线OC上任取一点P,若P到OA的距离为3cm,则P到OB的距离边为3cm.
四、教学过程设计
[教学内容8]
让学生运用本节课所学的知识回答课前引例中的问题:
问题:引例中两条管道的长度有什么关系?理由是什么?
[设计意图]
运用所学性质回答课前引例中的问题,让学生体会生活中蕴含数学知识,数学知识又能解决生活中的问题,感受数学的价值,让人人学到有用的数学.同时利用抢答形式更好活跃课堂气氛.
(二)教学环节设计
.
P
暖气
天然气
四、教学过程设计
[教学内容9][整合点3]
例题讲解
例1 如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别是E,F.
求证:EB=FC.
[设计意图]
多媒体的运用,促进了课堂教学方法与模式的变革。本组例题的解决是为突出重点、突破难点而设计的一项活动.让学生运用性质解决数学问题,通过利用多媒体对一些边进行变色,提醒学生直接运用定理,不要仍旧去找全等三角形.
(二)教学环节设计
A
F
C
D
B
E
四、教学过程设计
[教学内容9] [整合点3]
例题讲解
变题1:如图,△ABC中,AD是∠BAC的平分线, ∠C=90°, DE⊥AB于E,F 在AC上,且BD=DF,求证:CF=EB.
[设计意图]
同时通过信息技术方便进行一题多解及一题多变研究,更好的拓展学生解题思路及形成知识运用能力.两道变题同时展示,符合高效课堂要求.
(二)教学环节设计
A
F
C
D
B
E
A
C
D
B
E
变题2:如图,△ABC中, AD是∠BAC的平分线, ∠C=90°,DE⊥AB于E,BC=8,BD=5,求DE.
[教学内容9]课堂反馈
例2 已知:如图,△ABC的角平分线BM、CN相交于点P.求证:点P到三边AB、BC、CA的距离相等.
证明:过点P作PD 、PE、PF分别垂直于AB、BC、CA,垂足为D、E、F
∵BM是△ABC的角平分线,点P在BM上
∴PD=PE
(在角平分线上的点到角的两边的距离相等)
同理 PE=PF.
∴ PD=PE=PF.
即点P到边AB、BC、CA的距离相等
D
E
F
A
B
C
P
M
N
四、教学过程设计
(二)教学环节设计
[设计意图]
例2限时独立完成,并展示.通过问题的解决,帮助学生更好的理解角平分线的性质,并达到能熟练运用的程度.
四、教学过程设计
4.评价反思[教学内容10]
1、这节课你有哪些收获,还有什么困惑?
2、通过本节课你了解了哪些思考问题的方法?
3、完成课内反馈练习.
[设计意图]
通过引导学生自主归纳,调动学生的主动参与意识,锻炼学生归纳概括与表达能力.通过反馈练习,及时巩固与提高.
(二)教学环节设计
四、教学过程设计
5.布置作业[教学内容11]
作业
必做题:教材第22页第1、2、3题
选做题:教材第23页第6题
[设计意图]
设置必做题的目的是巩固本节课应知应会的内容,面向全体学生,人人必须完成.选做题要求学生根据个人的实际情况尽力完成,使学有余力的学生得到提高,达到“不同的人得到不同的发展”的目的.
(二)教学环节设计
11.3角的平分线的性质
(一)板书设计
11.3 角的平分线的性质
1、角的平分线的作法. 活动6例题
2、角的平分线的性质. 布置作业
五、补充说明
创设情景约4分钟,探究体验约13分钟,合作交流约18分钟,评价反思约6分钟,机动时间约4分钟.
(二)时间安排
五、补充说明
本节课设计了四个环节,环环相扣,三个整合点,层层深入,将信息技术与教学进行有机整合,充分调动学生的自主探究与合作交流,教师注意适时的点拔引导,学生的主体地位和教师的主导作用的得以充分体现,切实能够达到发展思维、提升能力的根本目的,能够较好地实现教学目标,也使课标理念能够更好地得到落实.
(三)教学设计说明
四、教学过程设计
5.布置作业[教学内容11]
作业(必做题)
(1)用三角尺可按下面方法画角平分线:在已知的∠AOB的两边上,分别取OM=ON,再分别过点M,N作OA,OB的垂线,交点为P,画射线OP,则OP平分∠AOB,为什么?
(2)△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF ⊥ AC,垂足分别为E,F.求证:EB=FC.
(3)如图,CD ⊥ AB,BE ⊥ AC,垂足分别为DE,BE,CD相交于点O,OB=OC.求证:∠1= ∠2
(二)教学环节设计
A
F
C
D
B
E
Back
四、教学过程设计
5.布置作业[教学内容11]
作业(选做题)
(4)如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,连接EF.EF与AD交于G.AD与EF垂直吗?证明你的结论.
(二)教学环节设计
A
F
C
D
B
E
G
Back11.3 角的平分线的性质(第1课时)说课稿
尊敬的各位专家评委老师,大家好!
我是29中的数学老师卫华生.有机会参加这次活动,并能得到专家的指导,我感到很高兴.今天,我说课的题目是《角的平分线的性质》第一课时,选自新人教版教材《数学》八年级上册第十一章第三节.这是本节课的教学流程图.下面,我从教学背景的分析、教学目标的确定、教学方法与手段的选择、教学过程的设计等四个方面对我的教学设计加以说明.
一、教学背景的分析
1.教学内容分析
本节课是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的.内容包括角平分线的作法、角平分线的性质及初步应用.作角的平分线是基本作图,角平分线的性质为证明线段或角相等开辟了新的途径,体现了数学的简洁美,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础.因此,本节内容在数学知识体系中起到了承上启下的作用.同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律.
2.教学对象分析
刚进入初二的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导.根据学生的认知特点和接受水平,我把第一课时的教学任务定为:掌握角平分线的画法及会用角平分线的性质定理解题,同时为下节判定定理的学习打好基础.
3.教学环境分析
利用多媒体技术可以方便地创设、改变和探索某种数学情境,在这种情境下,通过思考和操作活动,研究数学现象的本质和发现数学规律.
4.教学重点、难点
本节课的教学重点为:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用.难点是:(1)对角平分线性质定理中点到角两边的距离的正确理解;(2)对于性质定理的运用(学生习惯找三角形全等的方法解决问题而不注重利用刚学过的定理来解决,结果相当于对定理的重复证明)
教学难点突破方法:(1)利用多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理正确使用;(2)通过对比教学让学生选择简单的方法解决问题;(3)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习.
二、教学目标的确定
1、知识与技能:
(1)掌握用尺规作已知角的平分线的方法.
(2)理解角的平分线的性质并能初步运用.
2、数学思考:
通过让学生经历观察演示,动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力.
3、解决问题:
(1)初步了解角的平分线的性质在生产、生活中的应用.
(2)培养学生的数学建模能力.
4、情感与态度:
充分利用多媒体教学优势,培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情.
三、教学方法与手段的选择
1、教学方法:
本节课我坚持“教与学、知识与能力的辩证统一”和“使每个学生都得到充分发展”的原则,采用引导式探索发现法、主动式探究法、讲授教学法,引导学生自主学习、合作学习和探究学习,指导学生“动手操作,合作交流,自主探究”.鼓励学生多思、多说、多练,坚持师生间的多向交流,努力做到教法、学法的最优组合.
2、教学手段:
根据本节课的实际教学需要,我选择电脑及投影仪多媒体教学系统教学,另外借助一定的教学软件,如“几何画板”,“Powerpoint”等将有关教学内容用动态的方式展示出来,让学生能够进行直观地观察,并留下清晰的印象,从而发现变化之中的不变.这样,吸引了学生的注意力,激发了学生学习数学的兴趣,有利于学生对知识点的理解和掌握.
四、教学过程的设计
(一)教学流程设计
教学流程图
转下页
接上页
(二)教学环节设计
1.创设情景
[教学内容1]
生活中有很多数学问题:
小明家居住在通州区一栋居民楼的一楼,刚好位于一条暖气和天然气管道所成角的平分线上的P点,要从P点建两条管道,分别与暖气管道和天然气管道相连.
问题1:怎样修建管道最短?
问题2:新修的两条管道长度有什么关系,画来看一看.
[整合点1]利用多媒体渲染气氛,激发情感.
教师利用多媒体展示,引领学生进入实际问题情景中,利用信息技术既生动展示问题,同时又通过图片让学生身临其境般感受生活。学生动手画图,猜测并说出观察到的结论.引导学生了解角的平分线有很多未知的性质需我们来解开,并板书课题.
[设计意图]依据新课程理念,教师要创造性地使用教材,作为本课的第一个引例,从学生的生活出发,激发学生的学习兴趣,培养学生运用数学知识,解决实际问题的意识,复习了点到直线的距离这一概念,为后续的学习作好知识上的储备.
2.探究体验
[教学内容2]
要研究角的平分线的性质我们必须会画角的平分线,工人师傅常用如图所示的简易平分角的仪器来画角的平分线.出示仪器模型,介绍仪器特点(有两对边相等),将A点放在角的顶点处,AB和AD沿角的两边放下,过AC画一条射线AE,AE即为∠BAD的平分线.
学生口述,用三角形全等的方法证明AE是∠BAD的平分线.
多媒体展示实验过程.
[设计意图]帮助学生体验从生产生活中分离,抽象出数学模型,并主动运用所学知识来解决问题.
从上面的探究中可以得到作已知角的平分线的方法.
[教学内容3]
把简易平分角的仪器放在角的两边时,平分角的仪器两边相等,从几何作图角度怎么画?BC=DC,从几何作图角度怎么画?
教师提问,学生分组交流,归纳角的平分线的作法,口述证明角平线的过程.
[设计意图]根据画图过程,从实验操作中获得启示,明确几何作图的基本思路和方法,师生交流并归纳.
教师先在黑板上示范作图,再利用多媒体演示作图过程及画法,加深印象,并强调尺规作图的规范性.
利用三角形全等证明角平分线,进一步明确命题的题设与结论,熟悉几何证明过程.
[教学内容4]
作一个平角∠AOB的平分线OC,反向延长OC得到直线CD,请学生说出直线CD与AB的位置关系.并在此基础上再作出一个45 的角.
学生独立作图思考,发现直线AB与CD垂直.
[设计意图]通过作特殊角的平分线,让学生掌握过直线上一点作已知直线的垂线及特殊角的方法,达到培养学生的发散思维的目的.
[教学内容5]
让学生用纸剪一个角,把纸片对折,使角的两边叠合在一起,把对折后的纸片继续折一次,折出一个直三角形(使第一次的折痕为斜边),然后展开,观察两次折叠形成的三条折痕.
问题1:第一次的折痕和角有什么关系?为什么?
问题2:第二次折叠形成的两条折痕与角的两边有何关系,它们的长度有何关系?
学生动手剪纸,折叠,教师在多媒体上演示折叠过程.学生观察思考后,在班上交流:第一次折痕是角的平分线,第二次的折痕是角平分线上的点到两边的距离,它们的长度相等.
[设计意图]培养学生的动手操作能力和观察能力,为下面进一步揭示角平分线的性质作好铺垫.
[教学内容6]
如图:按照折纸的顺序画出角及折纸形成的三条折痕.让学生分组讨论、交流,再利用几何画板软件验证结论,并用文字语言阐述得到的性质.(角的平分线上的点到角两边的距离相等)
[整合点2]利用多媒体直观优势,突破教学难点.
结合图形写出已知,求证,分析后写出证明过程.教师归纳,强调定理的条件和作用.
教师用文字语言叙述得到的结论.引导学生结合图形写出已知、求证,分析后写出证明过程,并利用实物投影展示.
证明后,教师强调经过证明正确的命题可作为定理.同时强调文字命题的证明步骤.
[设计意图]经历实践→猜想→证明→归纳的过程,符合学生的认知规律,尤其是对于结论的验证,信息技术在此体现其不可替代性,从而更利于学生的直观体验上升到理性思维.
3.合作交流
[教学内容7]
判断正误,并说明理由:
(1)如图1,P在射线OC上,PE⊥OA,PF⊥OB,则PE=PF.
(2)如图2,P是∠AOB的平分线OC上的一点,E、F分别在OA、OB上,则PE=PF.
(3)如图3,在∠AOB的平分线OC上任取一点P,若P到OA的距离为3cm,则P到OB的距离边为3cm.
用多媒体展示判断题 ,学生独立思考完成,并请学生举手发表见解,教师予以肯定、鼓励.
[设计意图]让学生通过辨析来理解和巩固角平分线的性质定理.
[教学内容8]
让学生运用本节课所学的知识回答课前引例中的问题:
问题:引例中两条管道的长度有什么关系?理由是什么?
再次展示引例情景,用抢答的形式请同学们举手回答.
[设计意图]运用所学性质回答课前引例中的问题,让学生体会生活中蕴含数学知识,数学知识又能解决生活中的问题,感受数学的价值,让人人学到有用的数学.同时利用抢答形式更好活跃课堂气氛.
[教学内容9]
例题讲解
例1 如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别是E,F.
求证:EB=FC.
变题1:如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F 在AC上,且BD=DF,求证:CF=EB.
变题2:如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,BC=8,BD=5,求DE.
[整合点3]多媒体的运用,促进了课堂教学方法与模式的变革.
教师用多媒体展示问题,学生观察识图,独立思考,并且在小组内讨论交流,找出证明思路,再鼓励学生通过实物投影展示自己的证明过程,教师点评一题多变及一题多解.
[设计意图]本组例题的解决是为突出重点、突破难点而设计的一项活动.让学生运用性质解决数学问题,通过利用多媒体对一些边进行变色,提醒学生直接运用定理,不要仍旧去找全等三角形.同时通过信息技术方便进行一题多解及一题多变研究,更好的拓展学生解题思路及形成知识运用能力.两道变题同时展示,符合高效课堂要求.
通过学生观察识图、独立思考、小组讨论,培养学生合作交流的意识.
例2 已知:如图,△ABC的角平分线BM、CN相交于点P.求证:点P到三边AB、BC、CA的距离相等.
限时让学生独立思考分析,然后交流证题思路,再通过多媒体展示一般证明过程.
[设计意图]例2限时独立完成,并展示.通过问题的解决,帮助学生更好的理解角平分线的性质,并达到能熟练运用的程度.
4.评价反思
[教学内容10]
1、这节课你有哪些收获,还有什么困惑?
2、通过本节课你了解了哪些思考问题的方法?
教师让学生畅谈本节课的收获与体会.学生归纳、梳理交流本节课所获得的知识技能与情感体验.
[设计意图]通过引导学生自主归纳,调动学生的主动参与意识,锻炼学生归纳概括与表达能力.
5.布置作业
[教学内容11]
作业,必做题:教材第22页第1、2、3题; 选做题:教材第23页第6题
教师布置作业,学生独立完成.
[设计意图]设置必做题的目的是巩固本节课应知应会的内容,面向全体学生,人人必须完成.选做题要求学生根据个人的实际情况尽力完成,使学有余力的学生得到提高,达到“不同的人得到不同的发展”的目的.
五、补充说明
(一)板书设计:
(二)时间安排:
创设情景约4分钟,探究体验约13分钟,合作交流约18分钟,评价反思约6分钟,机动时间约4分钟.
(三)教学设计说明:
本节课设计了四个环节,环环相扣,三个整合点,层层深入,将信息技术与教学进行有机整合,充分调动学生的自主探究与合作交流,教师注意适时的点拔引导,学生的主体地位和教师的主导作用的得以充分体现,切实能够达到发展思维、提升能力的根本目的,能够较好地实现教学目标,也使课标理念能够很好地得到落实.
以上是我的全部说课内容,恳请评委老师批评指正,谢谢.
开始
学生画图交流归纳
观察 解释作图原理并证明
交流归纳角平分线画法
PPT
激趣、设疑引入
总结角平分线尺规作图方法
PPT
作平角的平分线
折纸探索角平分线的性质
PPT
介绍平分角仪器用法
PPT
验证结论
学生证明
介绍性质 强调定理
PPT
合作交流 巩固知识
PPT
合作交流
实物投影
一题多解 一题多变
PPT
巩固重点
教师总结
学生小结 学习体会
布置作业
结束
A
O
B
P
E
F
图2
图3
A
O
B
P
E
A
O
B
P
E
F
图1
A
F
C
D
B
E
A
B
C
P
M
N
11.3 角的平分线的性质
1、角的平分线的作法. 活动6例题
2、角的平分线的性质. 布置作业
PAGE
1《解的平分线的性质》教学流程图
开始
学生画图交流归纳
观察 解释作图原理并证明
交流归纳角平分线画法
PPT
激趣、设疑引入
总结角平分线尺规作图方法
PPT
作平角的平分线
折纸探索角平分线的性质
PPT
介绍平分角仪器用法
PPT
验证结论
学生证明
介绍性质 强调定理
PPT
合作交流 巩固知识
PPT
合作交流
实物投影
一题多解 一题多变
PPT
巩固重点
教师总结
学生小结 学习体会
布置作业
结束(共22张PPT)
角的平分线的性质
(上课)
[教学内容1]
生活中有很多数学问题:
小明家居住在通州区一栋居民楼的一楼,刚好位于一条暖气和天然气管道所成角的平分线上的P点,要从P点建两条管道,分别与暖气管道和天然气管道相连.
问题1:怎样修建管道最短?
问题2:新修的两条管道长度有什么关系,画来看看.
.
P
暖气
天然气
创设情境
[教学内容2]
要研究角的平分线的性质我们必须会画角的平分线,工人师傅常用如图所示的简易平分角的仪器来画角的平分线.
将A点放在角的顶点处,AB和AD沿角的两边放下,过AC画一条射线AE,AE即为∠BAD的平分线.
B
A
·
·
·
·
E
D
C
探究体验
[教学内容3]
把简易平分角的仪器放在角的两边时,平分角的仪器两边AB与AD相等,从几何作图角度怎么画?BC=DC,从几何作图角度怎么画?
B
A
·
·
·
·
D
C
探究体验
[教学内容3]角平分线的画法:
(2)分别以M,N为圆心.大于MN一半的长为半径作弧.两弧在∠AOB的内部交于C.
(3)作射线,
则射线OC即为所
A
B
O
M
N
C
探究体验
(1)以O为圆心,适当长为半径作弧,交OA于M,交OB于N.
[教学内容3]
想一想:为什么OC是角平分线呢?
已知:OM=ON,MC=NC.
求证:OC平分∠AOB.
证明:连接CM,CN
在△OMC和△ONC中,
OM=ON,
MC=NC,
OC=OC,
∴ △OMC≌△ONC
(SSS)
∴∠MOC=∠NOC
即:OC平分∠AOB
A
B
M
N
C
O
探究体验
[教学内容4]
操作:
(1)作一个平角∠AOB的平分线OC,
(2)反向延长OC得到直线CD.
.
O
A
B
C
D
探究体验
思考1:请说出直线CD与AB的位置关系.
思考2:作出一个45 的角.
[教学内容5]
操作:用纸剪一个角,把纸片对折,使角的两边叠合在一起,把对折后的纸片继续折一次,折出一个直三角形(使第一次的折痕为斜边),然后展开,观察两次折叠形成的三条折痕.
问题1:第一次的折痕和角有什么关系?为什么?
问题2:第二次折叠形成的两条折痕与角的两边有何关系,它们的长度有何关系?
探究体验
2.探究体验[教学内容6]
如图:按照折纸的顺序画出角及折纸形成的三条折痕.分组讨论、交流,再利用几何画板软件验证结论,并用文字语言阐述得到的性质.
结合图形写出已知,求证,分析后写出证明过程.
探究体验
[教学内容6]
结论:角平分线上的点到角的两边的距离相等
题设:一个点在一个角的平分线上
结论:它到角的两边的距离相等
已知:OC是∠AOB的平分线,点P在OC上,PD ⊥OA ,PE ⊥OB,垂足分别是D、E. 求证:PD=PE.
探究体验
[教学内容7]
判断正误,并说明理由:
(1)如图1,P在射线OC上,PE⊥OA,PF⊥OB,则PE=PF.
(2)如图2,P是∠AOB的平分线OC上的一点,E、F分别在OA、OB上,则PE=PF.
A
O
B
P
E
F
图2
图3
A
O
B
P
E
A
O
B
P
E
F
图1
(3)如图3,在∠AOB的平分线OC上任取一点P,若P到OA的距离为3cm,则P到OB的距离边为3cm.
合作交流
[教学内容8]
运用本节课所学的知识回答课前引例中的问题:
问题:引例中两条管道的长度有什么关系?理由是什么?
.
P
暖气
天然气
合作交流
M
N
[教学内容9]例题讲解
例1
已知:如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别是E,F.
求证:EB=FC.
合作交流
A
F
C
D
B
E
[教学内容9]例题讲解
变题1
如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F 在AC上,且BD=DF,求证:CF=EB.
A
F
C
D
B
E
合作交流
变题2
如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,BC=8,BD=5,求DE.
A
C
D
B
E
[教学内容9]例题讲解
例2 已知:如图,△ABC的角平分线BM、CN相交于点P.求证:点P到三边AB、BC、CA的距离相等.
证明:过点P作PD 、PE、PF分别垂直于AB、BC、CA,垂足为D、E、F
∵BM是△ABC的角平分线,点P在BM上
∴PD=PE
(在角平分线上的点到角的两边的距离相等)
同理 PE=PF.
∴ PD=PE=PF.
即点P到边AB、BC、CA
的距离相等
D
E
F
A
B
C
P
M
N
合作交流
[教学内容10]
1、这节课你有哪些收获,还有什么困惑?
2、通过本节课你了解了哪些思考问题的方法?
评价反思
[教学内容11]
作业
必做题:教材第22页第1、2、3题
选做题:教材第23页第6题
评价反思
[教学内容6]
探究体验
[教学内容11]
作业(必做题)
(1)用三角尺可按下面方法画角平分线:在已知的∠AOB的两边上,分别取OM=ON,再分别过点M,N作OA,OB的垂线,交点为P,画射线OP,则OP平分∠AOB,为什么?
(2)△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF ⊥ AC,垂足分别为E,F.求证:EB=FC.
(3)如图,CD ⊥ AB,BE ⊥ AC,垂足分别为DE,BE,CD相交于点O,OB=OC.求证:∠1= ∠2
合作交流
A
F
C
D
B
E
4.评价反思[教学内容11]
作业(选做题)
(4)如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,连接EF.EF与AD交于G.AD与EF垂直吗?证明你的结论.
A
F
C
D
B
E
G
合作交流