课时分层作业(二) 数列中的递推
(建议用时:40分钟)
一、选择题
1.符合递推关系式an=an-1的数列是( )
A.1,2,3,4,…
B.1,
,2,2,…
C.,2,
,2,…
D.0,
,2,2,…
B [由递推公式可知符合该递推公式的数列,每一项的倍为后一项,所以只有B符合.]
2.已知数列{an}的前n项和Sn=n2-2n(n∈N+),则a2+a18等于( )
A.33
B.34
C.35
D.36
B [a2=S2-S1=(22-4)-(1-2)=1,
a18=S18-S17=(182-36)-(172-34)=33,
∴a2+a18=1+33=34,故选B.]
3.已知数列{an}满足:a1=-,an=1-(n≥2),则a4等于( )
A.
B.
C.-
D.
C [由题知a2=1-=5,a3=1-=,a4=1-=-.]
4.若Sn为数列{an}的前n项和,且Sn=2an-2,则an与an-1的关系为( )
A.an=2an-1
B.an=an-1
C.an=-2an-1
D.an=-an-1
A [∵Sn=2an-2,∴当n=1时,a1=2a1-2,即a1=2.
当n≥2时,an=Sn-Sn-1=2an-2an-1,即an=2an-1,故选A.]
5.在数列{an}中,a1=2,an+1=an+ln,则an=( )
A.2+ln
n
B.2+(n-1)ln
n
C.2+nln
n
D.1+n+ln
n
A [an+1-an=ln=ln,∴an-an-1=ln,an-1-an-2=ln,…,a3-a2=ln
,a2-a1=ln
2.各式相加后得an=ln+ln+…+ln+ln
2+a1=ln+2=ln
n+2.]
二、填空题
6.已知数列{an}满足a1=1,an=2an-1+1(n≥2),则a5=________.
31 [因为a1=1,an=2an-1+1(n≥2),所以a2=3,a3=7,a4=15,所以a5=2a4+1=31.]
7.已知数列{an}的前n项和Sn=n,则数列{an}的通项公式an=________.
1 [当n=1时,a1=S1=1,
当n≥2时,an=Sn-Sn-1=n-(n-1)=1.(
)
显然n=1时满足(
)式,
∴an=1.]
8.用火柴棒按下图的方法搭三角形:
按图示的规律搭下去,则所用火柴棒数an与所搭三角形的个数n之间的关系可以是________.
an=2n+1,n∈N+ [a1=3,a2=3+2=5,a3=3+2+2=7,a4=3+2+2+2=9,…,an=2n+1,n∈N+.]
三、解答题
9.已知数列{an}的前n项和Sn分别是:
(1)Sn=n2+n+1;
(2)Sn=2n-1.求通项an.
[解] (1)当n=1时,a1=S1=3.
当n≥2时,an=Sn-Sn-1=2n.
∵a1不适合an,
∴an=
(2)当n=1时,a1=S1=1.
当n≥2时,
an=Sn-Sn-1=(2n-1)-(2n-1-1)=2n-1.
∵a1适合an,
∴an=2n-1.
10.已知各项均不为零的数列{an}满足a1=,anan-1=an-1-an(n≥2,n∈N+),求数列{an}的通项公式.
[解] ∵anan-1=an-1-an,且an≠0,
∴-=1,
∴当n≥2时,
=2+
=2+n-1
=n+1.
∴an=(n≥2),
又n=1时,a1=满足上式,故an=.
11.(多选题)已知数列{an}中,a1=2,an=-(n≥2),则下列说法正确的有( )
A.a2=-
B.a2=
C.a2
021=2
D.a2
021=-2
AC [法一:由已知可得,a1=2,a2=-,a3=2,a4=-,∴{an}是周期为2的数列,则a2
021=a1
010×2+1=a1=2.
法二:a2=-=-,
∵an=-(n≥2),∴an+2=-=an,∴{an}是周期为2的数列,则a2
021=a1
010×2+1=a1=2.]
12.已知数列{an}满足a0=1,an=a0+a1+…+an-1(n≥1),则当n≥1时,an等于( )
A.2n
B.
C.2n-1
D.2n-1
C [由an=a0+a1+…+an-1(n≥1),
得an-1=a0+a1+…+an-2(n≥2),
两式相减得,an=2an-1,
即=2(n≥2),
则an=a1···…·=a1·2n-1,
又a1=a0=1,∴an=2n-1(n≥2).
又∵a1=1也适合,∴an=2n-1.]
13.已知数列{an}满足a1=,an+1=an,则an=_______.
[由条件知=,分别令n=1,2,3,…,n-1,代入上式得n-1个等式,即···…·=×××…×?=.又∵a1=,∴an=.]
14.若数列{an}的前n项积为n2,那么n≥2时,an=________.
[设数列{an}的前n项积为Tn,则Tn=n2,
∴n≥2时,an==.]
15.已知数列{an}中,a1=1,前n项和Sn=an.
(1)求a2,a3;
(2)求{an}的通项公式.
[解] (1)由S2=a2,得(a1+a2)=a2,
又a1=1,∴a2=3a1=3.
由S3=a3,得3(a1+a2+a3)=5a3,
∴a3=(a1+a2)=6.
(2)∵当n≥2时,an=Sn-Sn-1
=an-an-1,
∴an=an-1,即=.
∴an=··…···a1
=··…···1
=.
又a1=1满足上式,
∴an=.
3/5