(共33张PPT)
第一章
特殊平行四边形
九年级数学教学课件(北师版)
1.2
矩形的性质与判定
第3课时
矩形的性质、判定与其他知识的综合
目录
1
新课目标
新课进行时
3
2
情景导学
知识小结
4
CONTENTS
随堂演练
5
课后作业
6
新课目标
1
新课目标
1.回顾矩形的性质及判定方法.
2.矩形的性质和判定方法与其他有关知识的综合运用.(难点)
情景导学
2
情景导学
问题1:
矩形有哪些性质?
A
B
C
D
O
①是轴对称图形;
②四个角都是直角;
③对角线相等且平分.
①定义:一组邻边相等且有一个角是直角的平行四边形
②有一组邻边相等的矩形
③有一个角是直角的菱形
问题2:
矩形有判定方法有哪些?
新课进行时
3
新课进行时
核心知识点一
矩形的性质与判定综合运用
A
B
C
D
O
E
例1:如图,矩形ABCD的对角线相交于点O,DE∥AC,
CE
∥BD.求证:四边形OCED是菱形.
证明:∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形.
∵四边形ABCD是矩形,
∴OC=OD,
∴四边形OCED是菱形.
新课进行时
H
G
F
E
D
C
B
A
证明:连接AC、BD.
∵四边形ABCD是矩形,
∴AC=BD.
∵点E、F、G、H为各边中点,
∴EF=FG=GH=HE,
∴四边形EFGH是菱形.
例2
如图,顺次连接矩形ABCD各边中点,得到四边形EFGH,求证:四边形EFGH是菱形.
C
A
B
D
E
F
G
H
【变式题】
如图,顺次连接对角线相等的四边形ABCD各边中点,得到四边形EFGH是什么四边形?
解:四边形EFGH是菱形.
又∵AC=BD,
∵点E、F、G、H为各边中点,
∴EF=FG=GH=HE,
∴四边形EFGH是菱形.
归纳:顺次连接对角线相等的四边形的各边中点,得到四边形是菱形.
理由如下:连接AC、BD
新课进行时
A
B
C
D
E
F
G
H
拓展1
如图,顺次连接平行四边形ABCD各边中点,得到四边形EFGH是什么四边形?
解:连接AC、BD.
∵点E、F、G、H为各边中点,
∴四边形EFGH是平行四边形.
拓展2
如图,若四边形ABCD是菱形,顺次连接菱形ABCD各边中点,得到四边形EFGH是什么四边形?
四边形EFGH是矩形.
同学们自己去解答吧
新课进行时
例3:如图,在矩形ABCD中,AD=6,对角线AC与BD相交于点O,AE⊥BD,垂足为E,ED=3BE,求AE的长.
分析:由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易证得△OAB是等边三角形,继而求得∠BAE的度数,由△OAB是等边三角形,求出∠ADE的度数,又由AD=6,即可求得AE的长.
新课进行时
解:∵四边形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵BE:ED=1:3,
∴BE:OB=1:2,
∵AE⊥BD,
∴AB=OA,∴OA=AB=OB,
即△OAB是等边三角形,
∴∠ABD=60°,∴∠ADE=90°-∠ABD=30°,
∴AE=
AD=3.
新课进行时
例4:已知:如图,在△ABC中,AB=AC,AD是△ABC的一条角平分线,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.
(1)求证:四边形ADCE为矩形;
(2)连接DE,交AC于点F,请判断
四边形ABDE的形状,并证明;
(3)线段DF与AB有怎样的关系?请直接写出你的结论.
新课进行时
证明:∵在△ABC中,AB=AC,AD是BC边的中线,
∴AD⊥BC,∠BAD=∠CAD,
∴∠ADC=90°,
∵AN为△ABC的外角∠CAM的平分线,
∴∠MAN=∠CAN,
∴∠DAE=90°,
∵CE⊥AN,
∴∠AEC=90°,
∴四边形ADCE为矩形;
(1)求证:四边形ADCE为矩形;
新课进行时
解:四边形ABDE是平行四边形,理由如下:
由(1)知,四边形ADCE为矩形,
则AE=CD,AC=DE.
又∵AB=AC,BD=CD,
∴AB=DE,AE=BD,
∴四边形ABDE是平行四边形;
(2)连接DE,交AC于点F,请判断四边形ABDE的形状,并证明;
新课进行时
解:DF∥AB,DF=
AB.理由如下:
∵四边形ADCE为矩形,
∴AF=CF,
∵BD=CD,
∴DF是△ABC的中位线,
∴DF∥AB,DF=
AB
(3)线段DF与AB有怎样的关系?请直接写出你的结论.
【点评】此题考查了矩形的判定与性质、三线合一以及三角形中位线的性质.此题难度适中,注意掌握数形结合思想的应用.
新课进行时
例5:如图所示,在△ABC中,D为BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD.连接BF.
(1)BD与DC有什么数量关系?请说明理由;
(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.
新课进行时
解:(1)BD=CD.理由如下:
∵AF∥BC,
∴∠AFE=∠DCE.
∵E是AD的中点,
∴AE=DE.
在△AEF和△DEC中,
∴△AEF≌△DEC(AAS),
∴AF=DC.
∵AF=BD,
∴BD=DC;
新课进行时
(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:
∵AF∥BD,AF=BD,
∴四边形AFBD是平行四边形.
∴AB=AC,BD=DC,
∴∠ADB=90°.
∴四边形AFBD是矩形.
【方法总结】本题综合考查了矩形和全等三角形的判定方法,明确有一个角是直角的平行四边形是矩形是解本题的关键.
新课进行时
知识小结
4
知识小结
与全等三角形的结合
矩形的性质与判定
与平面直角坐标系的结合
折叠问题
随堂演练
5
随堂演练
1.如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1,S2,则S1,S2的大小关系是(
)
A.S1>S2 B.S1=S2
C.S1D.3S1=2S2
B
2.如图,在△ABC中,点D,E,F分别是AB,AC,BC的中点,AH⊥BC于点H,连接EH,若DF=10
cm,则EH等于( )
A.8
cm B.10
cm C.16
cm D.24
cm
B
随堂演练
3.如图,矩形ABCD的对角线相交于点O,AE平分∠BAD交BC于点E,若∠CAE=15°,则∠BOE=____度.
75
随堂演练
4.如图,在矩形ABCD中,AB=2,BC=4,点A,B分别在y轴,x轴的正半轴上,点C在第一象限,如果∠OAB=30°,那么点C的坐标为
.
随堂演练
5.如图,O是菱形ABCD对角线AC与BD的交点,CD=5cm,OD=3cm;过点C作CE∥DB,过点B作BE∥AC,CE与BE相交于点E.
(1)求OC的长;
(2)求四边形OBEC的面积.
解:(1)∵四边形ABCD是菱形,∴AC⊥BD.
在Rt△OCD中,由勾股定理得OC=4cm;
(2)∵CE∥DB,BE∥AC,
∴四边形OBEC为平行四边形.
又∵AC⊥BD,即∠COB=90°,
∴平行四边形OBEC为矩形.
∵OB=OD=3cm,
∴S矩形OBEC=OB·OC=4×3=12(cm2).
随堂演练
6.如图,点D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.
(1)求证:CD=AN;
(2)若∠AMD=2∠MCD,
求证:四边形ADCN是矩形.
证明:(1)证△AMD≌△CMN得AD=CN,
又∵AD∥CN,
∴四边形ADCN是平行四边形,
∴CD=AN.
随堂演练
(2)若∠AMD=2∠MCD,
求证:四边形ADCN是矩形.
证明:
∵∠AMD=2∠MCD,
∠AMD=∠MCD+∠MDC,
∴∠MCD=∠MDC,
∴MD=MC,
由(1)知四边形ADCN是平行四边形,
∴MD=MN=MA=MC,
∴AC=DN,∴?ADCN是矩形.
随堂演练
课后作业
6
文本
文本
文本
单击此处添加文本
文本
课后作业
1、完成教材本课时的习题
2、预习下节课内容
谢谢欣赏
THANK
YOU
FOR
LISTENING(共38张PPT)
第一章
特殊平行四边形
九年级数学教学课件(北师版)
1.2
矩形的性质与判定
第2课时
矩形的判定
目录
1
新课目标
新课进行时
3
2
情景导学
知识小结
4
CONTENTS
随堂演练
5
课后作业
6
新课目标
1
新课目标
1.经历矩形判定定理的猜想与证明过程,理解并掌握矩形的判定定理.(重点)
2.能应用矩形的判定解决简单的证明题和计算题.(难点)
情景导学
2
情景导学
问题1
矩形的定义是什么?
有一个角是直角的平行四边形叫做矩形.
问题2
矩形有哪些性质?
矩形
边:
角:
对角线:
对边平行且相等
四个角都是直角
对角线互相平分且相等
思考
工人师傅在做门窗或矩形零件时,如何确保图形是矩形呢?现在师傅带了两种工具(卷尺和量角器),他说用这两种工具的任意一种就可以解决问题,这是为什么呢?
这节课我们一起探讨矩形的判定吧.
情景导学
新课进行时
3
新课进行时
核心知识点一
对角线相等的平行四边形是矩形
类比平行四边形的定义也是判定平行四边形的一种方法,那么矩形的定义也是判定矩形的一种方法.
问题1
除了定义以外,判定矩形的方法还有没有呢?
矩形是特殊的平行四边形.
类似地,那我们研究矩形的性质的逆命题是否成立.
新课进行时
问题2
上节课我们已经知道“矩形的对角线相等”,反过来,小明猜想对角线相等的四边形是矩形,你觉得对吗?
我猜想:对角线相等的平行四边形是矩形.
不对,等腰梯形的对角线也相等.
不对,矩形是特殊的平行四边形,所以它的对角线不仅相等且平分.
思考
你能证明这一猜想吗?
新课进行时
已知:如图,在□ABCD中,AC
,
DB是它的两条对角线,
AC=DB.求证:□ABCD是矩形.
证明:∵AB
=
DC,BC
=
CB,AC
=
DB,
∴
△ABC≌△DCB
,
∴∠ABC
=
∠DCB.
∵AB∥CD,
∴∠ABC
+
∠DCB
=
180°,
∴
∠ABC
=
90°,
∴
□
ABCD是矩形(矩形的定义)
A
B
C
D
证一证
新课进行时
矩形的判定定理:
对角线相等的平行四边形是矩形.
归纳总结
几何语言描述:
在平行四边形ABCD中,∵AC=BD,
∴平行四边形ABCD是矩形.
A
B
C
D
思考
数学来源于生活,事实上工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,则窗框一定是矩形,你现在知道为什么了吗?
对角线相等的平行四边形是矩形.
新课进行时
例1
如图,在
ABCD中,对角线AC,BD相交于点O,且OA=OD,∠OAD=50°.求∠OAB的度数.
A
B
C
D
O
解:∵四边形ABCD是平行四边形,
∴OA=OC=
AC,
OB=OD=
BD.
又∵OA=OD,
∴AC=BD,
∴四边形ABCD是矩形,
∴∠BAD=90°.
又∵∠OAD=50°,
∴∠OAB=40°.
典例精析
新课进行时
例2
如图,矩形ABCD的对角线AC、BD相交于点O,E、F、G、H分别是AO、BO、CO、DO上的一点,且AE=BF=CG=DH.求证:四边形EFGH是矩形.
B
C
D
E
F
G
H
O
A
证明:
∵四边形ABCD是矩形,
∴AC=BD(矩形的对角线相等),
AO=BO=CO=DO(矩形的对角线互相平分),
∵
AE=BF=CG=DH,
∴OE=OF=OG=OH,
∴四边形EFGH是平行四边形,
∵EO+OG=FO+OH,
即EG=FH,
∴四边形EFGH是矩形.
新课进行时
练一练
1.如图,在?ABCD中,AC和BD相交于点O,则下面条件能判定?ABCD是矩形的是
( )
A.AC=BD
B.AC=BC
C.AD=BC
D.AB=AD
A
新课进行时
2.如图
ABCD中,
∠1=
∠2中.此时四边形ABCD是矩形吗?为什么?
A
B
C
D
O
1
2
解:四边形ABCD是矩形.
理由如下:
∵四边形ABCD是平行四边形
∴
AO=CO,DO=BO.
又∵
∠1=
∠2,
∴AO=BO,
∴AC=BD,
∴四边形ABCD是矩形.
新课进行时
问题1
上节课我们研究了矩形的四个角,知道它们都是直角,它的逆命题是什么?成立吗?
逆命题:四个角是直角的四边形是矩形.
成立
问题2
至少有几个角是直角的四边形是矩形?
A
B
D
C
(有一个角是直角)
A
B
D
C
(有二个角是直角)
A
B
D
C
(有三个角是直角)
猜测:有三个角是直角的四边形是矩形.
新课进行时
核心知识点二
有三个角是直角的四边形是矩形
已知:如图,在四边形ABCD中,∠A=∠B=∠C=90°.
求证:四边形ABCD是矩形.
证明:∵
∠A=∠B=∠C=90°,
∴∠A+∠B=180°,∠B+∠C=180°,
∴AD∥BC,AB∥CD.
∴四边形ABCD是平行四边形,
∴四边形ABCD是矩形.
A
B
C
D
证一证
新课进行时
矩形的判定定理:
有三个角是直角的四边形是矩形.
归纳总结
几何语言描述:
在四边形ABCD中,∵
∠A=∠B=∠C=90°,
∴四边形ABCD是矩形.
A
B
C
D
新课进行时
思考
一个木匠要制作矩形的踏板.他在一个对边平行的长木板上分别沿与长边垂直的方向锯了两次,就能得到矩形踏板.为什么?
有三个角是直角的四边形是矩形.
新课进行时
例3
如图,
□?ABCD的四个内角的平分线分别相交于E、F、G、H,求证:四边形
EFGH为矩形.
证明:在□?ABCD中,AD∥BC,
∴∠DAB+∠ABC=180°.
∵AE与BG分别为∠DAB、
∠ABC的平分线,
A
B
D
C
H
E
F
G
∴四边形EFGH是矩形.
同理可证∠AED=∠EHG=90°,
∴∠AFB=90°,
∴∠GFE=90°.
∴
∠BAE+
∠ABF=
∠DAB+
∠ABC=90°.
新课进行时
例4
如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为E,求证:四边形ADCE为矩形.
证明:在△ABC中,AB=AC,AD⊥BC,
∴∠BAD=∠DAC,即∠DAC=
∠BAC.
又∵AN是△ABC外角∠CAM的平分线,
∴∠MAE=∠CAE=
∠CAM,
∴∠DAE=∠DAC+∠CAE
=
(∠BAC+∠CAM)=90°.
又∵AD⊥BC,CE⊥AN,
∴∠ADC=∠CEA=90°,
∴四边形ADCE为矩形.
新课进行时
练一练
在判断“一个四边形门框是否为矩形”的数学活动课上,一个合作学习小组的4位同学分别拟定了如下的方案,其中正确的是
( )
A.测量对角线是否相等
B.测量两组对边是否分别相等
C.测量一组对角是否都为直角
D.测量其中三个角是否都为直角
D
新课进行时
知识小结
4
知识小结
有一个角是直角的平行四边形是矩形.
对角线相等的平行四边形是矩形.
有三个角是直角的四边形是矩形.
运用定理进行计算和证明
矩形的判定
定义
判定定理
随堂演练
5
随堂演练
1.下列各句判定矩形的说法是否正确?
(1)对角线相等的四边形是矩形;
(2)对角线互相平分且相等的四边形是矩形;
(3)有一个角是直角的四边形是矩形;
(5)有三个角是直角的四边形是矩形;
(6)四个角都相等的四边形是矩形;
(7)对角线相等,且有一个角是直角的四边形是矩形;
(4)有三个角都相等的四边形是矩形;
×
×
×
×
√
√
√
√
(8)一组对角互补的平行四边形是矩形;
2.如图,直线EF∥MN,PQ交EF、MN于A、C两点,AB、CB、CD、AD分别是∠EAC、
∠MCA、
∠
ACN、∠CAF的平分线,则四边形ABCD是
(
)
A.梯形
B.平行四边形
C.矩形
D.不能确定
D
E
F
M
N
Q
P
A
B
C
C
随堂演练
3.如图,在四边形ABCD中,AB∥CD,∠BAD=90°,AB=5,BC=12,AC=13.求证:四边形ABCD是矩形.
证明:四边形ABCD中,AB∥CD,∠BAD=90°,
∴∠ADC=90°.
又∵△ABC中,AB=5,BC=12,AC=13,
满足132=52+122,即
∴△ABC是直角三角形,且∠B=90°,
∴四边形ABCD是矩形.
A
B
C
D
随堂演练
4.如图,平行四边形ABCD中,对角线AC、BD相交于点O,延长OA到N,使ON=OB,再延长OC至M,使CM=AN.求证:四边形NDMB为矩形.
证明:∵四边形ABCD为平行四边形,
∴AO=OC,OD=OB.
∵AN=CM,ON=OB,
∴ON=OM=OD=OB,
∴四边形NDMB为平行四边形,MN=BD,
∴平行四边形NDMB为矩形.
随堂演练
5.如图,△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB交AE于点E,求证:四边形ADCE是矩形.
证明:∵AB=AC,AD⊥BC,
∴∠B=∠ACB,BD=DC.
∵AE是∠BAC的外角平分线,
∴∠FAE=∠EAC.
∵∠B+∠ACB=∠FAE+∠EAC,
∴∠B=∠ACB=∠FAE=∠EAC,
∴AE∥CD.
又∵DE∥AB,
∴四边形AEDB是平行四边形,
∴AE平行且相等BD.
随堂演练
又∵BD=DC,
∴AE平行且等于DC,
故四边形ADCE是平行四边形.
又∵∠ADC=90°,
∴平行四边形ADCE是矩形.
随堂演练
6.如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.
(1)经过多长时间,四边形PQCD是平行四边形?
解:设经过xs,四边形PQCD为平行四边形,
即PD=CQ,
所以24-x=3x,
解得x=6.
即经过6s,四边形PQCD
是平行四边形;
随堂演练
(2)经过多长时间,四边形PQBA是矩形?
解:设经过ys,四边形PQBA为矩形,
即AP=BQ,
∴y=26-3y,
解得y=6.5,
即经过6.5s,四边形PQBA是矩形.
随堂演练
课后作业
6
文本
文本
文本
单击此处添加文本
文本
课后作业
1、完成教材本课时的习题
2、预习下节课内容
谢谢欣赏
THANK
YOU
FOR
LISTENING(共41张PPT)
第一章
特殊平行四边形
1.2
矩形的性质与判定
九年级数学教学课件(北师版)
第1课时
矩形的性质
目录
1
新课目标
新课进行时
3
2
情景导学
知识小结
4
CONTENTS
随堂演练
5
课后作业
6
新课目标
1
新课目标
1.理解矩形的概念,知道矩形与平行四边形的区别与联系.(重点)
2.会证明矩形的性质,会用矩形的性质解决简单的问题.(重点、难点)
3.掌握直角三角形斜边中线的性质,并会简单的运用.
(重点)
情景导学
2
情景导学
观察下面图形,长方形在生活中无处不在.
思考
长方形跟我们前面学行四边形有什么关系?
你还能举出其他的例子吗?
情景导学
新课进行时
3
新课进行时
核心知识点一
矩形的性质
活动1:利用一个活动的平行四边形教具演示,使平行四边形的一个内角变化,请同学们注意观察.
矩形
新课进行时
平行四边形
矩形
有一个角
是直角
矩形是特殊的平行四边形.
定义:有一个角是直角的平行四边形叫做矩形.
也叫做长方形.
归纳总结
平行四边形不一定是矩形.
思考
因为矩形是平行四边形,所以它具有平行四边形的所有性质,由于它有一个角为直角,它是否具有一般平行四边形不具有的一些特殊性质呢?
可以从边,角,对角线等方面来考虑.
新课进行时
活动2:
准备素材:直尺、量角器、橡皮擦、课本、铅笔盒等.
(1)请同学们以小组为单位,测量身边的矩形(如书本,课桌,铅笔盒等)的四条边长度、四个角度数和对角线的长度及夹角度数,并记录测量结果.
新课进行时
A
B
C
D
O
AB
AD
AC
BD
∠BAD
∠ADC
∠AOD
∠AOB
橡皮擦
课本
桌子
物体
测量
(实物)
(形象图)
(2)根据测量的结果,你有什么猜想?
猜想1
矩形的四个角都是直角.
猜想2
矩形的对角线相等.
你能证明吗?
新课进行时
证明:∵四边形ABCD是矩形,
∴∠B=∠D,∠C=∠A,
AB∥DC.
∴∠B+∠C=180°.
又∵∠B
=
90°,
∴∠C
=
90°.
∴∠B=∠C=∠D=∠A
=90°.
如图,四边形ABCD是矩形,∠B=90°.
求证:
∠B=∠C=∠D=∠A=90°.
A
B
C
D
证一证
新课进行时
证明:∵四边形ABCD是矩形,
∴AB=DC,∠ABC=∠DCB=90°,
在△ABC和△DCB中,
∵AB=DC,∠ABC=∠DCB,BC=
CB,
∴△ABC≌△DCB.
∴AC=DB.
A
B
C
D
O
如图,四边形ABCD是矩形,∠ABC=90°,对角线AC与DB相较于点O.
求证:AC=DB.
新课进行时
矩形除了具有平行四边形所有性质,还具有的性质有:
矩形的四个角都是直角.
矩形的对角线相等.
归纳总结
几何语言描述:
在矩形ABCD中,对角线AC与DB相交于点O.
∠ABC=∠BCD=∠CDA=∠DAB
=90°,AC=DB.
A
B
C
D
O
新课进行时
例1
如图,在矩形ABCD中,两条对角线AC,BD相交于点O,∠AOB=60°,AB=4
,求矩形对角线的长.
解:∵四边形ABCD是矩形.
∴AC
=
BD,
OA=
OC=
AC,OB
=
OD
=
BD
,
∴OA
=
OB.
又∵∠AOB=60°,
∴△OAB是等边三角形,
∴OA=AB=4,
∴AC=BD=2OA=8.
A
B
C
D
O
典例精析
矩形的对角线相等且互相平分
新课进行时
例2
如图,在矩形ABCD中,E是BC上点
,AE=AD,DF⊥AE
,垂足为F.求证:DF=DC.
A
B
C
D
E
F
证明:连接DE.
∵AD
=AE,∴∠AED
=∠ADE.
∵四边形ABCD是矩形,
∴AD∥BC,∠C=90°.
∴∠ADE=∠DEC,
∴∠DEC=∠AED.
又∵DF⊥AE,
∴∠DFE=∠C=90°.
又∵DE=DE,
∴△DFE≌△DCE,
∴DF=DC.
新课进行时
例3
如图,将矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=4,求△BED的面积.
解:∵四边形ABCD是矩形,
∴AD∥BC,∠A=90°,
∴∠2=∠3.
又由折叠知∠1=∠2,
∴∠1=∠3,∴BE=DE.
设BE=DE=x,则AE=8-x.
∵在Rt△ABE中,AB2+AE2=BE2,
∴42+(8-x)2=x2,
解得x=5,即DE=5.
∴S△BED=
DE·AB=
×5×4=10.
矩形的折叠问题常与勾股定理结合考查
新课进行时
思考
请同学们拿出准备好的矩形纸片,折一折,观察并思考.??矩形是不是轴对称图形?如果是,那么对称轴有几条?
矩形的性质:
对称性:
.
对称轴:
.
轴对称图形
2条
新课进行时
练一练
1.如图,在矩形ABCD中,对角线AC,BD交于点O,
下列说法错误的是
( )
A.AB∥DC
B.AC=BD
C.AC⊥BD
D.OA=OB
A
B
C
D
O
C
新课进行时
2.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD面积的_________.
新课进行时
3.如图,在矩形ABCD中,AE⊥BD于E,∠DAE:∠BAE=3:1,求∠BAE和∠EAO的度数.
解:∵四边形ABCD是矩形,
∴∠DAB=90°,
AO=
AC,BO=
BD,AC=BD,
∴∠BAE+∠DAE=90°,AO=BO.
又∵∠DAE:∠BAE=3:1,
∴∠BAE=22.5°,∠DAE=67.5°.
∵AE⊥BD,
∴∠ABE=90°-∠BAE=90°-22.5°=67.5°,
∴∠OAB=∠ABE=67.5°
∴∠EAO=67.5°-22.5°=45°.
新课进行时
A
B
C
D
O
活动:如图,一张矩形纸片,画出两条对角线,沿着对角线AC剪去一半.
B
C
O
A
问题
Rt△ABC中,BO是一条怎样的线段?
它的长度与斜边AC有什么关系?
猜想:直角三角形斜边上的中线等于斜边的一半.
试给出数学证明.
新课进行时
核心知识点二
直角三角形斜边上的中线的性质
O
C
B
A
D
证明:
延长BO至D,
使OD=BO,
连接AD、DC.
∵AO=OC,
BO=OD,
∴四边形ABCD是平行四边形.
∵∠ABC=90°,
∴平行四边形ABCD是矩形,
∴AC=BD,
如图,在Rt△ABC中,∠ABC=90°,BO是AC上的中线.求证:
BO
=
AC
?
∴BO=
BD=
AC.
归纳:直角三角形斜边上的中线等于斜边的一半.
证一证
新课进行时
例4
如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.
(1)若AB=10,AC=8,求四边形AEDF的周长;
解:∵AD是△ABC的高,E、F分别是AB、AC的中点,
∴DE=AE=
AB=
×10=5,
DF=AF=
AC=
×8=4,
∴四边形AEDF的周长=AE+DE+DF+AF=5+5+4+4=18;
新课进行时
(2)求证:EF垂直平分AD.
证明:∵DE=AE,DF=AF,
∴E、F在线段AD的垂直平分线上,
∴EF垂直平分AD.
归纳:当已知条件含有线段的中点、直角三角形的条件时,可联想直角三角形斜边上的中线的性质进行求解.
新课进行时
例5
如图,已知BD,CE是△ABC不同边上的高,点G,F分别是BC,DE的中点,试说明GF⊥DE.
解:连接EG,DG.
∵BD,CE是△ABC的高,
∴∠BDC=∠BEC=90°.
∵点G是BC的中点,
∴EG=
BC,DG=
BC.
∴EG=DG.
又∵点F是DE的中点,
∴GF⊥DE.
归纳:在直角三角形中,遇到斜边中点常作斜边中线,进而可将问题转化为等腰三角形的问题,然后利用等腰三角形“三线合一”的性质解题.
新课进行时
归纳总结
直角三角形斜边上的中线上的性质常见类型
新课进行时
如图,在△ABC中,∠ABC
=
90°,BD是斜边AC上的中线.
(1)若BD=3cm,则AC
=_____cm;
(2)若∠C
=
30°
,AB
=
5cm,则AC
=_____cm,
BD
=
_____cm.
A
B
C
D
6
10
5
练一练
新课进行时
知识小结
4
知识小结
矩形的相关概念及性质
具有平行四边行的一切性质
四个内角都是直角,
两条对角线互相平分且相等
轴对称图形
有两条对称轴
直角三角形斜边上的中线等于斜边的一半
有一个角是直角的平行四边形叫做矩形
随堂演练
5
随堂演练
1.矩形具有而一般平行四边形不具有的性质是
(
)
A.对角线相等
B.对边相等
C.对角相等
D.对角线互相平分
2.若直角三角形的两条直角边分别5和12,则斜边上的中线长为
(
)
A.13
B.6
C.6.5
D.不能确定
3.若矩形的一条对角线与一边的夹角为40°,则两条对角线相交的锐角是
(
)
A.20
°
B.40°
C.80
°
D.10°
A
C
C
4.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF=______cm.
2.5
5.如图,△ABC中,E在AC上,且BE⊥AC.D为AB中点,若DE=5,AE=8,则BE的长为______.
6
第4题图
第5题图
随堂演练
6.如图,四边形ABCD是矩形,对角线AC,BD相交于点O,BE∥AC交DC的延长线于点E.
(1)求证:BD=BE,
(2)若∠DBC=30°
,
BO=4
,求四边形ABED的面积.
A
B
C
D
O
E
(1)证明:∵四边形ABCD是矩形,
∴AC=
BD,AB∥CD.
又∵BE∥AC,
∴四边形ABEC是平行四边形,
∴AC=BE,
∴BD=BE.
随堂演练
(2)解:∵在矩形ABCD中,BO=4,
∴BD
=
2BO
=2×4=8.
∵∠DBC=30°,
∴CD=
BD=
×8=4,
∴AB=CD=4,DE=CD+CE=CD+AB=8.
在Rt△BCD中,
BC=
∴四边形ABED的面积=
×(4+8)×
=
.
A
B
C
D
O
E
随堂演练
7.如图,在矩形ABCD中,AB=6,AD=8,P是AD上的动点,PE⊥AC,PF⊥BD于F,求PE+PF的值.
解:连接OP.
∵四边形ABCD是矩形,
∴∠DAB=90°,OA=OD=OC=OB,
∴S△AOD=S△DOC=S△AOB=S△BOC
=
S矩形ABCD=
×6×8=12.
在Rt△BAD中,由勾股定理得BD=10,
∴AO=OD=5,
∵S△APO+S△DPO=S△AOD,
∴
AO·PE+
DO·PF=12,即5PE+5PF=24,
∴PE+PF=
.
随堂演练
课后作业
6
文本
文本
文本
单击此处添加文本
文本
课后作业
1、完成教材本课时的习题
2、预习下节课内容
谢谢欣赏
THANK
YOU
FOR
LISTENING