苏教版(2019)高中数学 必修第一册 章末复习课课件(32张)+学案(含课后练习)

文档属性

名称 苏教版(2019)高中数学 必修第一册 章末复习课课件(32张)+学案(含课后练习)
格式 zip
文件大小 3.9MB
资源类型 教案
版本资源 苏教版(2019)
科目 数学
更新时间 2020-09-08 15:14:51

文档简介

章末检测卷(二)
(时间:120分钟 满分:150分)
一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一项符合题目要求)
1.?m,n∈Z,使得m2=n2+2
019的否定是(  )
A.?m,n∈Z,使得m2=n2+2
019
B.?m,n∈Z,使得m2≠n2+2
019
C.?m,n∈Z,使得m2≠n2+2
019
D.以上都不对
答案 C
2.设a,b,c分别是△ABC的三条边,且a≤b≤c,则“a2+b2=c2”是“△ABC为直角三角形”的(  )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析 ∵a≤b≤c,∴a2+b2=c2?△ABC为直角三角形,故选C.
答案 C
3.已知集合A={1,a},B={1,2,3},则“a=3”是“A?B”的(  )
A.充要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件
解析 ∵a=3?A?B,而A?Ba=3,∴“a=3”是“A?B的充分不必要条件”.
答案 B
4.设x>0,y∈R,则“x>y”是“x>|y|”的(  )
A.充要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件
解析 令x=1,y=-2,满足x>y,但不满足x>|y|;由x>|y|得-xy成立,故“x>y”是“x>|y|”的必要不充分条件.
答案 C
5.下列命题中的假命题是(  )
A.?x∈R,|x|+1>0
B.?x∈N+,(x-1)2>0
C.?x∈R,|x|<1
D.?x∈R,+1=2
解析 A中命题是全称量词命题,易知|x|+1>0恒成立,故是真命题;B中命题是全称量词命题,当x=1时,(x-1)2=0,故是假命题;C中命题是存在量词命题,当x=0时,|x|=0,故是真命题;D中命题是存在量词命题,当x=±1时,+1=2,故是真命题.
答案 B
6.“命题?x∈R,使x2+ax-4a<0为假命题”是“-16≤a≤0”的(  )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析 依题意得“?x∈R,x2+ax-4a≥0”是真命题,故Δ=a2+16a≤0,解得-16≤a≤0,故选C.
答案 C
7.命题p:ax2+2x+1=0有实数根,若綈p是假命题,则实数a的取值范围为(  )
A.{a|a<1}
B.{a|a≤1}
C.{a|a>1}
D.{a|a≥1}
解析 因为綈p是假命题,所以p为真命题,即方程ax2+2x+1=0有实数根.
当a=0时,方程为2x+1=0,x=-,满足条件.当a≠0时,若使方程ax2+2x+1=0有实数根,则Δ=4-4a≥0,即a≤1且a≠0.综上知a≤1.
答案 B
8.在一次知识测验后,甲、乙、丙三人对成绩进行预测.
甲:我的成绩比乙高.
乙:丙的成绩比我和甲的都高.
丙:我的成绩比乙高.
成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为(  )
A.甲、乙、丙
B.乙、甲、丙
C.丙、乙、甲
D.甲、丙、乙
解析 三人成绩互不相同且只有一个人预测正确,有以下三种情况:
(1)若乙预测正确,则丙预测也正确,不合题意;
(2)若丙预测正确,甲、乙预测错误,即丙成绩比乙高,甲的成绩比乙低,则丙的成绩比乙和甲都高,此时乙预测又正确,与假设矛盾;
(3)若甲预测正确,乙、丙预测错误,可得甲成绩高于乙,乙成绩高于丙,符合题意,故选A.
答案 A
二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对得5分,选对但不全的得3分,有选错的不得分)
9.对任意实数a,b,c,下列命题中的假命题是(  )
A.“ac>bc”是“a>b”的必要条件
B.“ac=bc”是“a=b”的必要条件
C.“ac>bc”是“a>b”的充分条件
D.“ac=bc”是“a=b”的充分条件
解析 a=b?a-b=0?(a-b)c=0?ac=bc,∴ac=bc是a=b的必要条件.
答案 ACD
10.下列命题的否定中是全称量词命题且为真命题的有(  )
A.?x∈R,x2-x+<0
B.所有的正方形都是矩形
C.?x∈R,x2+2x+2≤0
D.至少有一个实数x,使x3+1=0
解析 命题的否定是全称量词命题,即原命题为存在量词命题,故排除B.再根据命题的否定为真命题,即原命题为假命题.又D为真命题,故选AC.
答案 AC
11.设全集为U,在下列选项中是B?A的充要条件的有(  )
A.A∪B=A
B.(
?UA)∩B=?
C.(
?UA)?(
?UB)
D.A∪(?UB)=U
解析 由Venn图可知,A,B,C,D都是充要条件,故选ABCD.
答案 ABCD
12.不等式1≤|x|≤4成立的充分不必要条件为(  )
A.[-4,-1]
B.[1,4]
C.[-4,-1]∪[1,4]
D.[-4,4]
解析 由不等式1≤|x|≤4,解得-4≤x≤-1,或1≤x≤4.∴不等式1≤|x|≤4成立的充分不必要条件为A,B.故选AB.
答案 AB
三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)
13.下列命题中,是全称量词命题的是________;是存在量词命题的是________(本题第一空2分,第二空3分).
(1)每一个矩形的对角线都互相平分;(2)有些集合无真子集;(3)能被8整除的数也能被2整除.
解析 (1)中含有全称量词“每一个”,(3)中陈述的是所有满足条件的数,所以(1)(3)是全称量词命题;(2)中含有存在量词“有些”,所以(2)是存在量词命题.
答案 (1)(3) (2)
14.命题“对任意x∈R,|x-2|+|x-4|>3”的否定是_____________________.
解析 由定义知命题的否定为“存在x∈R,使得|x-2|+|x-4|≤3”.
答案 存在x∈R,使得|x-2|+|x-4|≤3
15.已知命题p:?x∈R,x2-2x+m=0,若綈p为假命题,则实数m的取值范围为________.
解析 因为綈p为假命题,所以命题p:?x∈R,x2-2x+m=0为真命题,则方程x2-2x+m=0的判别式Δ=4-4m≥0,即m≤1.故实数m的取值范围为{m|m≤1}.
答案 {m|m≤1}
16.线段y=-3x+m,x∈[-1,1]在x轴下方的一个充分不必要条件是________.
解析 结合一次函数图象知,要使线段在x轴下方,

∴∴m<-3.
∴m<-4就是一个使命题成立的充分不必要条件.
答案 m∈(-∞,-4)(答案不唯一)
四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分10分)判断下列命题是全称量词命题,还是存在量词命题:
(1)凸多边形的外角和等于360°;
(2)有的速度方向不定;
(3)对任意直角三角形的两锐角∠A,∠B,都有sin
∠A=cos
∠B.
解 (1)可以改写为“所有的凸多边形的外角和等于360°”,故为全称量词命题.
(2)含有存在量词“有的”,故是存在量词命题.
(3)含有全称量词“任意”,故是全称量词命题.
18.(本小题满分12分)写出下列命题的否定,并判断所得命题的真假性.
(1)?x∈Z,|x|∈N;
(2)每一个平行四边形都是中心对称图形;
(3)?x∈R,x+1≤0;
(4)?x∈R,x2+2x+3=0.
解 (1)?x∈Z,|x|?N,假命题.
(2)有些平行四边形不是中心对称图形,假命题.
(3)?x∈R,x+1>0,假命题.
(4)?x∈R,x2+2x+3≠0,真命题.
19.(本小题满分12分)已知命题p:?1≤x≤3,都有m≥x,命题q:?1≤x≤3,使m≥x,若命题p为真命题,綈q为假命题,求实数m的取值范围.
解 由题意知命题p,q都是真命题.
由?1≤x≤3,都有m≥x都成立,只需m大于或等于x的最大值,即m≥3.由?1≤x≤3,使m≥x成立,只需m大于或等于x的最小值,即m≥1,因为两者同时成立,故实数m的取值范围为{m|m≥3}∩{m|m≥1}={m|m≥3}.
20.(本小题满分12分)求证:方程x2-2x-3m=0有两个同号且不相等的实根的充要条件是-证明 (1)充分性:∵-∴方程x2-2x-3m=0的判别式Δ=4+12m>0,
且-3m>0,
∴方程x2-2x-3m=0有两个同号且不相等的实根.
(2)必要性:若方程x2-2x-3m=0有两个同号且不相等的实根,
则有解得-综合(1)(2)知,方程x2-2x-3m=0有两个同号且不相等的实根的充要条件是-21.(本小题满分12分)若p:-2解 若a=-1,b=,则Δ=a2-4b<0,关于x的方程x2+ax+b=0无实根,故pq.
若关于x的方程x2+ax+b=0有两个小于1的不等正根,不妨设这两个根为x1,x2,
且0于是0<-a<2,0即-2所以p是q的必要不充分条件.
22.(本小题满分12分)已知非空集合P={x|a+1≤x≤2a+1},Q={x|-2≤x≤5}.
(1)若a=3,求(?RP)∩Q;
(2)若“x∈P”是“x∈Q”的充分不必要条件,求实数a的取值范围.
解 因为P是非空集合,所以2a+1≥a+1,即a≥0.
(1)当a=3时,P={x|4≤x≤7},
?RP={x|x<4或x>7},
Q={x|-2≤x≤5},
所以(?RP)∩Q={x|-2≤x<4}.
(2)若“x∈P”是“x∈Q”的充分不必要条件,即P?Q,
即且a+1≥-2和2a+1≤5的等号不能同时取得,解得0≤a≤2,
即实数a的取值范围为{a|0≤a≤2}.章末检测卷(四)
(时间:120分钟 满分:150分)
一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一项符合题目要求)
1.等于(  )
A.3
B.-3
C.±3
D.-27
解析 ==-3.
答案 B
2.若+有意义,则a的取值范围是(  )
A.a≥0
B.a≥1
C.a≥2
D.a∈R
解析 ∵∴a≥1.
答案 B
3.方程2log3x=的解是(  )
A.x=
B.x=
C.x=
D.x=9
解析 ∵2log3x=2-2,∴log3x=-2,∴x=3-2=.
答案 A
4.化简(x<0,y<0)为(  )
A.2x2y
B.2xy
C.4x2y
D.-2x2y
解析 =|2x2y|=-2x2y.
答案 D
5.lg-2lg+lg=(  )
A.lg
2
B.lg
3
C.lg
4
D.lg
5
解析 原式=lg-lg=lg=lg
2.
答案 A
6.若a>0,a=,则loga=(  )
A.2
B.3
C.4
D.5
解析 因为a=,a>0,所以a==,设loga=x,所以=a.所以x=3.
答案 B
7.计算:+3log3-lg
5+,其结果是(  )
A.-1
B.1
C.-3
D.3
解析 原式=+-lg
5+=+-lg
5+1-lg
2=1.
答案 B
8.设a=log36,b=log520,则log215=(  )
A.
B.
C.
D.
解析 a=log36=1+log32,b=log520=1+log54=1+2log52,
∴log23=,log25=,
∴log215=log23+log25=+=.
答案 D
二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对得5分,选对但不全的得3分,有选错的不得分)
9.下列说法不正确的为(  )
A.=a
B.若a∈R,则(a2-a+1)0=1
C.=x+y
D.=
解析 A中,n为偶数时,不一定成立,故错误.B中,a2-a+1=+>0,
∴(a2-a+1)0=1,正确.C错误.D中,左侧为负,右侧为正,不相等.
答案 ACD
10.下列运算错误的是(  )
A.2log10+log0.25=2
B.log427·log258·log95=
C.lg
2+lg
50=10
D.log(2+)(2-)-(log2)2=-
解析 A中,原式=log102+log0.25=log25=-2,故A错误.
B中,原式=··=××=,故B错误.
C中,lg
2+lg
50=lg
100=2.故C错误.
D中,原式=log(2+)-
=-1-=-.
答案 ABC
11.若ab>0,则下列等式中不正确的是(  )
A.lg(ab)=lg
a+lg
b
B.lg=lg
a-lg
b
C.lg=lg
D.lg(ab)=
解析 A,B成立的条件是a>0,b>0.D成立的前提是ab≠1.C成立.
答案 ABD
12.已知a>0,且a≠1,下列说法不正确的是(  )
A.若M=N,则logaM=logaN
B.若logaM=logaN,则M=N
C.若logaM2=logaN2,则M=N
D.若M=N,则logaM2=logaN2
解析 A中,当M=N<0时无意义;B正确;C中可得M2=N2,可能M=-N;D中,当M=N=0时,不成立.
答案 ACD
三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)
13.(log43+log83)(log32+log92)=________.
解析 原式=
==.
答案 
14.已知2x=10,则x-log25=________.
解析 x=log210,∴x-log25=log2=1.
答案 1
15.[(-5)4]=________,log43·log=________(本题第一空2分,第二空3分).
解析 [(-5)4]=5,log43·log=·=·=.
答案 5 
16.=________(a>0,b>0).
解析 原式==a+-1+b1+-2-=ab-1=.
答案 
四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分10分)将下列根式化为分数指数幂的形式:
(1)(a>0);(2);
(3)()-(b>0).
解 (1)原式====a.
(2)原式======x-.
(3)原式=[(b-)]-=b-××(-)=b.
18.(本小题满分12分)(1)求值:-(-9.6)0-+(1.5)-2+[(-5)4];
(2)已知a+a-=3,求a+a-的值.
解 (1)原式=-1-++5
=-1-++5=.
(2)由a+a-=3,得a+a-1=-2=7,故a+a-=+(a-)3=(a+a-)(a-1+a-1)=3×(7-1)=18.
19.(本小题满分12分)计算下列各式的值:
(1);
(2)log3
·log5[4log210-(3)-7log72].
解 (1)原式===1.
(2)原式=log3·log5[2log210-(3)-7log72]
=·log5(10-3-2)
=·log55=-.
20.(本小题满分12分)计算:
(1)÷100;
(2)(log43)×;
(3)log2.56.25+lg
0.01+ln-21+log23.
解 (1)原式====.
(2)原式=×=×=×=.
(3)原式=log2.52.52+lg
10-2+ln
e-2×2log23=2+(-2)+-6=-.
21.(本小题满分12分)计算:
(1)-++;
(2)lg
500+lg-lg
64+50×(lg
2+lg
5)2.
解 (1)原式=+1-1++e-=+e.
(2)原式=lg
5+lg
102+lg
23-lg
5-lg
26+50×(lg
10)2=lg
5+2+3lg
2-lg
5-3lg
2+50=52.
22.(本小题满分12分)若a,b是方程2(lg
x)2-lg
x4+1=0的两个实根,求lg(ab)·(logab+logba)的值.
解 原方程可变形为2(lg
x)2-4lg
x+1=0,设t=lg
x,则方程变形为2t2-4t+1=0,设t1,t2是方程2t2-4t+1=0的两个实根,
则t1+t2=2,t1·t2=.
又a,b是方程2(lg
x)2-lg
x4+1=0的两个实根,
不妨令t1=lg
a,t2=lg
b,则lg
a+lg
b=2,
lg
a·lg
b=,
∴lg(ab)·(logab+logba)
=(lg
a+lg
b)·
=(lg
a+lg
b)·
=(lg
a+lg
b)·
=2×=12.章末复习课
[网络构建]
[核心归纳]
1.幂函数的图象与性质
函数
y=x
y=x2
y=x3
y=x
y=
y=x-2
定义域
R
R
R
{x|x≥0}
{x|x≠0}
{x|x≠0}
值域
R
{y|y≥0}
R
{y|y≥0}
{y|y≠0}
{y|y>0}
奇偶性
奇函数
偶函数
奇函数
非奇非偶函数
奇函数
偶函数
单调性
在R上单增
在(-∞,0)上单减,在(0,+∞)上单增
在R上单增
在[0,+∞)上单增
在(-∞,0)和(0,+∞)上单减
在(-∞,0)上单增,在(0,+∞)上单减
图象
INCLUDEPICTURE"W204.TIF"
INCLUDEPICTURE
"W204.TIF"
\
MERGEFORMAT
INCLUDEPICTURE"W205.TIF"
INCLUDEPICTURE
"W205.TIF"
\
MERGEFORMAT
INCLUDEPICTURE"W206.TIF"
INCLUDEPICTURE
"W206.TIF"
\
MERGEFORMAT
INCLUDEPICTURE"W207.TIF"
INCLUDEPICTURE
"W207.TIF"
\
MERGEFORMAT
INCLUDEPICTURE"W208.TIF"
INCLUDEPICTURE
"W208.TIF"
\
MERGEFORMAT
INCLUDEPICTURE"W209.TIF"
INCLUDEPICTURE
"W209.TIF"
\
MERGEFORMAT
公共点
(0,0)(1,1)
(1,1)
2.指数函数的图象与性质
a>1
0图象
定义域
R
值域
(0,+∞)
性质
过定点(0,1),即x=0时,y=1
当x>0时,y>1;当x<0时,0当x>0时,01
在(-∞,+∞)
上是增函数
在(-∞,+∞)
上是减函数
注意 (1)对于a>1与0(2)a>1时,a值越大,图象向上越靠近y轴,递增速度越快;0(3)在同一坐标系中有多个指数函数图象时,图象的相对位置与底数大小有如下关系:在y轴右侧,图象从上到下相应的底数由大变小;在y轴左侧,图象从下到上相应的底数由大变小,即无论在y轴的左侧还是右侧,底数按逆时针方向变大.这一性质可通过令x=1时,y=a去理解,如图.
INCLUDEPICTURE"++S204.TIF"
INCLUDEPICTURE
"++S204.TIF"
\
MERGEFORMAT
3.对数函数的图象和性质
a>1
0图象
定义域
(0,+∞)
值域
R
性质
当x=1时,y=0,即图象过定点(1,0)
当x>1时,y>0;当0当x>1时,y<0;当00
在(0,+∞)
上是增函数
在(0,+∞)
上是减函数
4.指数函数与对数函数的关系
对数函数y=logax(a>0且a≠1)与指数函数y=ax(a>0且a≠1)互为反函数,其图象关于直线y=x对称(如图).
要点一 函数的图象
函数图象的画法
画法
应用范围
画法技巧
基本函数法
基本初等函数
利用一次函数、反比例函数、二次函数、指数函数、对数函数的有关知识,画出特殊点(线),直接根据函数的图象特征作出图象
变换法
与基本初等函数有关联的函数
弄清所给函数与基本函数的关系,恰当选择平移、对称等变换方法,由基本函数图象变换得到函数图象
描点法
未知函数或较复杂的函数
列表、描点、连线
【例1】 (1)已知f(x)是函数y=log2x的反函数,则y=f(1-x)的图象是(  )
(2)函数f(x)=的图象大致为(  )
解析 (1)函数y=log2x的反函数为y=2x,故f(x)=2x,于是f(1-x)=21-x=,此函数在R上为减函数,其图象过点(0,2),所以C中的图象符合要求.
(2)法一 函数f(x)的定义域是(-∞,2)∪(2,+∞),排除C.因为f(0)=-<0,所以排除B.又当x<0时,ln(x2-4x+4)=ln(x-2)2>0,(x-2)5<0,所以f(x)<0,排除D,故选A.
法二 f(x)=的图象是由函数y=的图象向右平移两个单位长度得到的,而函数y=是奇函数,所以函数f(x)=的图象关于点(2,0)对称,排除B和C.又当x→+∞时,f(x)→0,所以排除D,故选A.
答案 (1)C (2)A
【训练1】 (1)在同一直角坐标系中,函数f(x)=xa(x≥0),g(x)=logax的图象可能是(  )
(2)函数f(x)=的大致图象为(  )
解析 (1)幂函数f(x)=xa的图象不过(0,1)点,故A错误;B项中由对数函数f(x)=logax的图象知01,而此时幂函数f(x)=xa的图象应是增长越来越快的变化趋势,故C错误.
(2)由f(1)=>0可排除D,由f(-1)=-<0可排除A,又f(9)==3->f(1),所以排除C,故选B.
答案 (1)D (2)B
要点二 比较大小
数的大小比较常用方法:
(1)比较两数(式)或几个数(式)大小问题是本章的一个重要题型,主要考查指数函数、对数函数的图象与性质的应用及差值比较法与商值比较法的应用.常用的方法有单调性法、图象法、中间搭桥法、作差法、作商法.
(2)当需要比较大小的两个实数均是指数幂或对数式时,可将其看成某个指数函数、对数函数的函数值,然后利用该函数的单调性比较.
(3)比较多个数的大小时,先利用“0”和“1”作为分界点,即把它们分为“小于0”,“大于或等于0且小于或等于1”,“大于1”三部分,再在各部分内利用函数的性质比较大小.
【例2】 (多选题)若a>b>1,0A.ac>bc
B.abc>bac
C.logac>logbc
D.alogbc>blogac
解析 ∵0∵a>b>1,∴ac>bc,故A正确;
∵0∵a>b>1,∴bc-1>ac-1,又ab>0,∴abc>bac,故B正确;
∵0∵a>b>1,∴logcalogac>logbc,
故C正确;
由C知,0>logac>logbc,
∵a>b>1,∴alogbc答案 ABC
【训练2】 设a=log3,b=,c=2,则(  )
A.aB.cC.cD.b解析 a=log3<0,01,
故有a答案 A
要点三 指数型函数性质的综合问题
对于形如y=af(x)或y=f(ax)的复合函数,要注意转化思想的应用,将问题转化为我们熟悉的指数函数,一次函数、二次函数等问题去求解.通常研究函数的单调性、奇偶性、定义域、值域等性质.
【例3】 若函数f(x)=为奇函数.
(1)确定a的值;(2)求函数f(x)的定义域;(3)求函数f(x)的值域;(4)讨论函数f(x)的单调性.
解 先将函数f(x)=化简为
f(x)=a-.
(1)由奇函数的定义,得f(-x)+f(x)=0,
即a-+a-=0,
∴2a+=0,
∴a=-.
(2)∵f(x)=--,∴2x-1≠0,即x≠0,
∴函数f(x)=--的定义域为{x|x≠0}.
(3)∵x≠0,∴2x-1>-1.
又∵2x-1≠0,∴-1<2x-1<0或2x-1>0,
∴<--或--<-,
即函数f(x)的值域为∪.
(4)当x>0时,设0则f(x1)-f(x2)=-=.
∵02x1-1>0,2x2-1>0,
∴f(x1)-f(x2)<0,即f(x1)因此f(x)=--在(0,+∞)上单调递增.
由于f(x)是奇函数,从而f(x)=--在(-∞,0)上单调递增.
【训练3】 设函数f(x)=ax-a-x(a>0且a≠1).
(1)若f(1)>0,求不等式f(-x2+7)+f(x-5)<0的解集;
(2)若f(1)=,且g(x)=a2x+a-2x-4f(x)-m≥0在[1,+∞)上恒成立,求m的最大值.
解 (1)∵f(1)=a-=>0,又a>0且a≠1,
∴a>1,∴y=ax在R上单调递增,y=a-x在R上单调递减,
故f(x)在R上单调递增.
又∵f(-x)=a-x-ax=-f(x)且x∈R.
∴f(x)是R上的奇函数.
由f(-x2+7)+f(x-5)<0,
得f(-x2+7)∴-x2+7<5-x,解得x<-1或x>2,
∴不等式的解集为(-∞,-1)∪(2,+∞).
(2)由f(1)=a-=,解得a=-(舍去)或a=2,则f(x)=2x-2-x,
∴g(x)=22x+2-2x-4(2x-2-x)-m=(2x-2-x)2-4(2x-2-x)-m+2.
令t=2x-2-x.∵x∈[1,+∞).∴t≥.g(x)≥0在[1,+∞)上恒成立,即t2-4t-m+2≥0在t∈上恒成立,亦即m≤t2-4t+2在t∈上恒成立.
而t2-4t+2=(t-2)2-2≥-2,
∴m≤-2,∴m的最大值为-2.
要点四 对数型函数的性质
以对数函数y=logax(a>0,a≠1)的图象与性质为依托,以及利用对数函数的性质进行定义域、值域、单调性、奇偶性等问题的研究时,不要忘记对数中真数应大于0,以免扩大范围.
【例4】 已知函数f(x-1)=lg.
(1)求函数f(x)的解析式;
(2)判断f(x)的奇偶性;
(3)解关于x的不等式f(x)≥lg(3x+1).
解 (1)令t=x-1,则x=t+1,
由题意知>0,即0所以f(t)=lg=lg,
故f(x)=lg(-1(2)由(1)知,f(x)=lg(-1所以f(-x)=lg=lg=lg
=-lg=-f(x),
所以f(x)为奇函数.
(3)原不等式可化为lg≥lg(3x+1),-1即≥3x+1>0,-1解得-故原不等式的解集为∪.
【训练4】 已知函数f(x)=loga(8-ax)(a>0,且a≠1).
(1)若f(x)<2,求实数x的取值范围;
(2)若f(x)>1在区间[1,2]上恒成立,求实数a的取值范围.
解 (1)当a>1时,由f(x)<2,得0<8-ax所以-a当0a2,所以x<-a.
因为当a>1时,x的取值范围是;
当0(2)当a>1时,f(x)=loga(8-ax)在[1,2]上是减函数,由f(x)>1恒成立,得f(x)min=loga(8-2a)>1,
解得1当0由f(x)>1恒成立,得f(x)min=loga(8-a)>1,
且8-2a>0,
所以a>4,且a<4,故a不存在.
综上可知,实数a的取值范围是.章末检测卷(三)
(时间:120分钟 满分:150分)
一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.若a<1,b>1,那么下列命题中正确的是(  )
A.>
B.>1
C.a2D.ab解析 利用特值法,令a=-2,b=2.
则<,A错误;<0,B错误;
a2=b2,C错误;ab答案 D
2.不等式<的解集是(  )
A.{x|x<2}
B.{x|x>2}
C.{x|0D.{x|x<0或x>2}
解析 由<,得-=<0,
即x(2-x)<0,解得x>2或x<0,故选D.
答案 D
3.如果二次函数y=x2-(k+1)x+k+4有两个不同的零点,则实数k的取值范围是(  )
A.(-∞,-3)∪(5,+∞)
B.(-∞,-5)∪(3,+∞)
C.(-3,5)
D.(-5,3)
解析 由Δ=(k+1)2-4(k+4)>0得k2-2k-15>0,
∴k>5或k<-3.
答案 A
4.已知a>0,b>0,且满足+=1,则ab的最大值是(  )
A.2
B.3
C.4
D.6
解析 因为a>0,b>0,且满足+=1,
所以1≥2,化为ab≤3,当且仅当a=,b=2时取等号,则ab的最大值是3.
答案 B
5.小王从甲地到乙地往返的时速分别为a和b(aA.aB.v=
C.D.v=
解析 设甲、乙两地的距离为s,
则v==.
由于aa,
又+>2,∴v<.
故a答案 A
6.已知a>0,b>0,+=1,若不等式2a+b≥3m恒成立,则m的最大值为(  )
A.1
B.2
C.3
D.7
解析 ∵2a+b=·(2a+b)=5++≥5+4=9(当且仅当a=b时,取等号).∴3m≤9,即m≤3.
答案 C
7.“不等式x2-x+m>0在R上恒成立”的充要条件是(  )
A.m>
B.m<
C.m<1
D.m>1
解析 ∵不等式x2-x+m>0在R上恒成立,
∴Δ=(-1)2-4m<0,解得m>,
又∵m>?Δ=1-4m<0,
所以“m>”是“不等式x2-x+m>0在R上恒成立”的充要条件,故选A.
答案 A
8.设实数1A.{x|3aB.{x|a2+2C.{x|3D.{x|3解析 由x2-(a2+3a+2)x+3a(a2+2)<0,得(x-3a)·(x-a2-2)<0,∵1a2+2,∴关于x的一元二次不等式x2-(a2+3a+2)x+3a(a2+2)<0的解集为{x|a2+2答案 B
二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对得5分,选对但不全的得3分,有选错的不得分)
9.若<<0,则下列不等式中,正确的不等式有(  )
A.a+bB.|a|>|b|
C.aD.+>2
解析 ∵<<0,∴b-a>0,则|b|>|a|,故B错误;C显然错误;由于>0,>0,∴+>2=2,故D正确.故选AD.
答案 AD
10.已知函数y=x-4+(x>-1),当x=a时,y取得最小值b,则(  )
A.a=2
B.a=1
C.b=5
D.b=1
解析 y=x-4+=(x+1)+-5,
因为x>-1,所以x+1>0,
所以y≥2-5=2×3-5=1,
当且仅当x+1=,即x=2时,等号成立,
此时a=2,b=1.
答案 AD
11.若a>0,b>0,a+b=2,则下列不等式恒成立的是(  )
A.ab≤1
B.+≤
C.a2+b2≥2
D.+≥2
解析 因为ab≤=1,所以A正确;因为(+)2=a+b+2=2+2≤2+a+b=4,故B不正确;a2+b2≥=2,所以C正确;+==≥2,所以D正确.
答案 ACD
12.下列命题是假命题的是(  )
A.不等式>1的解集为{x|x<1}
B.函数y=x2-2x-8的零点是(-2,0)和(4,0)
C.若x∈R,则函数y=+的最小值为2
D.x2-3x+2<0是x<2成立的充分不必要条件
解析 由>1得<0,∴解集为(0,1),故A错误;二次函数的零点是指其图象与x轴交点的横坐标,应为-2和4,故B错误;C
中,≥2,故y=+≥2.等号成立的条件为x2+4=1,无解,故C错误;D中,由x2-3x+2<0得1答案 ABC
三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)
13.若方程x2+(m-3)x+m=0有实数解,则m的取值范围是________________.
解析 由方程x2+(m-3)x+m=0有实数解,
∴Δ=(m-3)2-4m≥0,即m2-10m+9≥0,
∴(m-9)(m-1)≥0,∴m≥9或m≤1.
答案 (-∞,1]∪[9,+∞)
14.已知函数y=x2+mx-1,若对于任意x∈[m,m+1],都有y<0成立,则实数m的取值范围是________.
解析 要满足y=x2+mx-1<0对于任意x∈[m,m+1]恒成立,
只需即
解得-答案 
15.某公司一年购买某种货物400吨,每次都购买x吨,运费为4万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储费用之和最小,则x=________吨,和最小值为________(本题第一空2分,第二空3分).
解析 设一年总费用为y万元,每年购买次数为次,则y=·4+4x=+4x≥2=160(万元),当且仅当=4x,即x=20时等号成立,故x=20.
答案 20 160
16.若函数f(x)=x2+(m-2)x+(5-m)有两个小于2的不同零点,则实数m的取值范围是________.
解析 依题意有
解得m>4.
答案 (4,+∞)
四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分10分)当x>3时,求的最小值.
解 ∵x>3,∴x-3>0.
∴=
=2(x-3)++12≥2+12=24.
当且仅当2(x-3)=,
即x=6时,等号成立,
∴的最小值为24.
18.(本小题满分12分)若不等式(1-a)x2-4x+6>0的解集是{x|-3(1)解不等式2x2+(2-a)x-a>0;
(2)b为何值时,ax2+bx+3≥0的解集为R.
解 (1)由题意知1-a<0且-3和1是方程(1-a)x2-4x+6=0的两根,∴
解得a=3.∴不等式2x2+(2-a)x-a>0,
即为2x2-x-3>0,
解得x<-1或x>.
∴所求不等式的解集为.
(2)ax2+bx+3≥0,
即为3x2+bx+3≥0,
若此不等式的解集为R,
则b2-4×3×3≤0,
∴-6≤b≤6.
19.(本小题满分12分)已知不等式ax2-3x+6>4的解集为{x|x<1或x>b}.
(1)求a,b的值;
(2)解不等式ax2-(ac+b)x+bc<0.
解 (1)由题意知,1和b是方程ax2-3x+2=0的两根,
则解得
(2)不等式ax2-(ac+b)x+bc<0,
即为x2-(c+2)x+2c<0,即(x-2)(x-c)<0.
①当c>2时,原不等式的解集为{x|2②当c<2时,原不等式的解集为{x|c③当c=2时,原不等式无解.
综上知,当c>2时,原不等式的解集为{x|2当c<2时,原不等式的解集为{x|c当c=2时,原不等式的解集为?.
20.(本小题满分12分)北京、张家口2022年冬奥会申办委员会在俄罗斯索契举办了发布会,某公司为了竞标配套活动的相关代言,决定对旗下的某商品进行一次评估.该商品原来每件售价为25元,年销售8万件.
(1)据市场调查,若价格每提高1元,销售量将相应减少2
000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?
(2)为了抓住申奥契机,扩大该商品的影响力,提高年销售量.公司决定立即对该商品进行全面技术革新和营销策略改革,并提高定价到x元.公司拟投入(x2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入万元作为浮动宣传费用.试问:当该商品改革后的销售量a至少应达到多少万件时,才可能使改革后的销售收入不低于原收入与总投入之和?此时该商品每件定价多少元?
解 (1)设每件定价为t元,依题意得t≥25×8,
整理得t2-65t+1
000≤0,解得25≤t≤40.
所以要使销售的总收入不低于原收入,每件定价最多为40元.
(2)依题意得当x>25时,不等式ax≥25×8+50+(x2-600)+有解,
等价于当x>25时,a≥++有解.
由于+≥2=10,当且仅当=,即x=30时等号成立.
所以a≥10.2.
故当该商品改革后的销售量a至少达到10.2万件时,才可能使改革后的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.
21.(本小题满分12分)已知a,b,c均为正数,证明:a2+b2+c2+≥6,并确定a,b,c为何值时,等号成立.
证明 因为a,b,c均为正数,
所以a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac.
所以a2+b2+c2≥ab+bc+ac.①
同理++≥++,②
故a2+b2+c2+
≥ab+bc+ac+++=++≥6.③
当且仅当a=b=c时,①式和②式等号成立,
当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立.故当且仅当a=b=c=时,原不等式等号成立.
所以原不等式成立.
22.(本小题满分12分)已知不等式>0(a∈R).
(1)解这个关于x的不等式;
(2)若当x=-a时不等式成立,求a的取值范围.
解 (1)原不等式等价于(ax-1)(x+1)>0.
①当a=0时,由-(x+1)>0,得x<-1.
②当a>0时,不等式可化为
(x+1)>0,
解得x<-1或x>.
③当a<0时,不等式可化为(x+1)<0.
若<-1,即-1若=-1,即a=-1,则不等式的解集为空集;
若>-1,即a<-1,则-1综上所述,当a<-1时,
不等式的解集为;
当a=-1时,不等式解集为?;
当-1当a=0时,不等式的解集为(-∞,-1);
当a>0时,不等式的解集为(-∞,-1)∪.
(2)∵当x=-a时不等式成立,
∴>0,
即-a+1<0,
∴a>1,即a的取值范围为(1,+∞).章末检测卷(六)
(时间:120分钟 满分:150分)
一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一项符合题目要求)
1.下列函数中,在区间(0,1)上为增函数的是(  )
A.y=2x2-x+3
B.y=
C.y=x
D.y=logx
解析 对于y=xα,当α>0时,y=xα在(0,+∞)上为增函数.
答案 C
2.函数y=的定义域为(  )
A.[1,+∞)
B.(1,+∞)
C.
D.
解析 要使函数有意义,需满足
∴∴x≥1,
∴函数y=的定义域为[1,+∞).
答案 A
3.若a=20.2,b=log43.2,c=log20.5,则(  )
A.a>b>c
B.b>a>c
C.c>a>b
D.b>c>a
解析 ∵a=20.2>1>b=log43.2>0>c=-1,∴a>b>c.
答案 A
4.函数f(x)=lg(-1A.(-1,1)
B.(0,0)
C.(1,-1)
D.(1,1)
解析 ∵f(-x)=lg=-lg=-f(x),
又-1∴f(x)=lg的图象关于(0,0)对称.
答案 B
5.已知函数f(x)=log2|ax-2|(a≠0)的图象关于直线x=2对称,则函数f(x)图象的大致形状为(  )
解析 因为函数f(x)=log2|ax-2|(a≠0)的图象关于直线x=2对称,所以f(0)=f(4),即log2|0-2|=log2|4a-2|,得a=1,所以f(x)=log2|x-2|,易知f(x)=log2|x-2|在(2,+∞)上单调递增,从而排除B,D.又当x=2时,函数f(x)无意义,所以排除C,故选A.
答案 A
6.设f(x)是定义域为R的偶函数,且在(0,+∞)上单调递减,则(  )
A.f>f(2-)>f(2-)
B.f>f(2-)>f(2-)
C.f(2-)>f(2-)>f
D.f(2-)>f(2-)>f
解析 因为f(x)是定义域为R的偶函数,
所以f=f(-log34)=f(log34).
又因为log34>1>2->2->0,且函数f(x)在(0,+∞)单调递减,
所以f(log34)答案 C
7.已知指数函数y=,当x∈(0,+∞)时,有y>1,则关于x的不等式loga(x-1)≤loga(6-x)的解集为(  )
A.
B.
C.
D.
解析 ∵y=在x∈(0,+∞)时,有y>1,
∴>1,∴0于是由loga(x-1)≤loga(6-x),
得解得≤x<6,
∴原不等式的解集为.故选D.
答案 D
8.设a>1,若函数f(x)=loga(ax2-x)在上是增函数,则实数a的取值范围是(  )
A.(2,+∞)
B.[2,+∞)
C.(4,+∞)
D.[4,+∞)
解析 设u=ax2-x,由题意知u=ax2-x在上是增函数,则有≤,即a≥1,于是a>1.
又y=logau是对数函数,故u=ax2-x在上恒大于零,即ax2-x>0,∴a>在上恒成立,则a>2.综上知a>2.
答案 A
二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对得5分,选对但不全的得3分,有选错的不得分)
9.若loga2A.0B.0C.a>b>1
D.0解析 若loga2与logb2同号,则由loga2则01,∴D正确.
答案 BCD
10.设函数y=ln(x2-x+1),则下列命题中正确的是(  )
A.函数的定义域为R
B.函数是增函数
C.函数的图象关于直线x=对称
D.函数的值域是
解析 由x2-x+1=+>0恒成立,故A正确,函数在上是减函数,在上是增函数,故B错误.
由x2-x+1=+≥,可知函数的值域为,且函数关于x=对称.
答案 ACD
11.已知函数f(x)=,g(x)=,则f(x),g(x)满足(  )
A.f(-x)=-f(x),g(-x)=g(x)
B.f(-2)C.f(2x)=2f(x)g(x)
D.[f(x)]2-[g(x)]2=1
解析 f(-x)==-=-f(x),g(-x)==g(x),故A正确;
f(x)为增函数,则f(-2)g(-2),故B正确;
2f(x)·g(x)=2×·=2×=f(2x),故C正确;
[f(x)]2-[g(x)]2=[f(x)+g(x)]·[f(x)-g(x)]=ex·(-e-x)=-1,故D错误.
答案 ABC
12.给出下列结论,其中正确的是(  )
A.函数y=的最大值为
B.已知函数y=loga(2-ax)(a>0且a≠1)在(0,1)上是减函数,则实数a的取值范围是(1,2)
C.在同一平面直角坐标系中,函数y=2x与y=log2x的图象关于直线y=x对称
D.函数y=x-在(-∞,0)上是增函数
解析 A中,-x2+1≤1,∴y=的最小值为.故A错误;
由y=loga(2-ax)在(0,1)上是减函数,则∴1C中,y=2x与y=log2x互为反函数,图象关于y=x对称.D中,函数y=x-是偶函数,且在(0,+∞)上递减,所以在(-∞,0)上是增函数.C、D正确.
答案 CD
三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)
13.有四个幂函数:①f(x)=x-1;②f(x)=x-2;③f(x)=x3;④f(x)=x.某同学研究了其中的一个函数,并给出这个函数的三个性质:
(1)偶函数;
(2)值域是{y|y∈R,且y≠0};
(3)在(-∞,0)上是增函数.
如果给出的三个性质中,有两个正确,一个错误,则他研究的函数是________(填序号).
解析 对于函数①f(x)=x-1,这是一个奇函数,值域是{y|y∈R,且y≠0},在(-∞,0)上是减函数,所以三个性质中有两个不正确;对于函数②f(x)=x-2,这是一个偶函数,其值域是{y|y∈R,且y>0},在(-∞,0)上是增函数,所以三个性质中有两个正确,符合条件;同理可判断③④中函数不符合条件.
答案 ②
14.设函数f(x)=则满足f(x)≤2的x的取值范围是________.
解析 当x≤1时,由21-x≤2,解得x≥0,所以0≤x≤1;当x>1时,由1-log2x≤2,解得x≥,所以x>1.综上可知x≥0.
答案 [0,+∞)
15.已知函数f(x)=lg(2x-b)(b为常数),若x∈[1,+∞)时,f(x)≥0恒成立,则b的取值范围是________.
解析 因为要使f(x)=lg(2x-b)在x∈[1,+∞)时,恒有f(x)≥0,所以有2x-b≥1在x∈[1,+∞)时恒成立,即2x≥b+1在x∈[1,+∞)上恒成立.又因为指数函数g(x)=2x在定义域上是增函数.所以只需2≥b+1成立即可,解得b≤1.
答案 (-∞,1]
16.已知函数f(x)=则f(f(3))=________;若对任意的x∈R,都有f(x)≤|k-1|成立,则实数k的取值范围为________(本题第一空2分,第二空3分).
解析 f(f(3))=f(log3)=f(-1)=-(-1)2+(-1)=-2.对任意x∈R,都有f(x)≤|k-1|成立,
即f(x)max≤|k-1|.
因为f(x)的草图如图所示,
观察f(x)=
的图象可知,当x=时,函数f(x)max=,
所以|k-1|≥,解得k≤或k≥.
答案 -2 ∪
四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分10分)已知函数f(x)=+的定义域为A.
(1)求集合A;
(2)若函数g(x)=(log2x)2-2log2x-1,且x∈A,求函数g(x)的最大值、最小值和对应的x值.
解 (1)要使f(x)有意义,需满足所以
所以≤x≤4,所以集合A=.
(2)设t=log2x,因为x∈,所以t∈[-1,2],
所以y=t2-2t-1,t∈[-1,2].
因为y=t2-2t-1=(t-1)2-2的对称轴为t=1∈[-1,2],
所以当t=1时,y有最小值-2.
所以当t=-1时,y有最大值2.
所以当x=2时,g(x)的最小值为-2.
当x=时,g(x)的最大值为2.
18.(本小题满分12分)已知函数g(x)是f(x)=ax(a>0且a≠1)的反函数,且g(x)的图象过点.
(1)求f(x)与g(x)的解析式;
(2)比较f(0.3),g(0.2)与g(1.5)的大小.
解 (1)因为函数g(x)是f(x)=ax(a>0且a≠1)的反函数,∴g(x)=logax,由g(x)过点,
所以loga2=,所以a=2,解得a=2.
所以f(x)=2x,g(x)=log2x.
(2)因为f(0.3)=20.3>20=1,g(0.2)=log20.2<0,
又g(1.5)=log21.5且g(1.5)=1og21.5>log21=0,
所以0所以f(0.3)>g(1.5)>g(0.2).
19.(本小题满分12分)已知函数f(x)=b·ax(a,b为常数,a>0,且a≠1)的图象经过点A(1,6),B(3,24).
(1)试确定函数f(x)的解析式;
(2)若关于x的不等式+-m≥0在区间(-∞,1]上恒成立,求实数m的取值范围.
解 (1)把(1,6),(3,24)代入f(x)=b·ax,得结合a>0,且a≠1,解得∴f(x)=3×2x.
(2)要使+≥m在区间(-∞,1]上恒成立,只需保证函数y=+在区间(-∞,1]上的最小值不小于m即可.
∵函数y=+在区间(-∞,1]上单调递减,
∴当x=1时,y=+取得最小值,
∴只需m≤即可.
即实数m的取值范围为.
20.(本小题满分12分)函数f(x)=loga(1-x)+loga(x+3)(0(1)求函数y=f(x)的定义域;
(2)若函数y=f(x)的最小值为-2,求a的值.
解 要使函数有意义,则有
解得-3(2)函数可化为f(x)=loga[(1-x)(x+3)]
=log(-x2-2x+3)=loga[-(x+1)2+4].
∵-3∵0由loga4=-2,得a-2=4,∴a=4-=.
21.(本小题满分12分)已知函数f(x)=(a>0且a≠1)是定义在R上的奇函数.
(1)求a的值;
(2)求函数f(x)的值域;
(3)当x∈(0,1]时,t·f(x)≥2x-2恒成立,求实数t的取值范围.
解 (1)∵函数f(x)是定义在R上的奇函数,
∴f(0)==0,解得a=2.
∴f(x)=,经检验,f(x)为奇函数.
(2)由(1)得f(x)===1-.
又∵2x>0,∴2x+1>1,∴0<<2,
∴-1<1-<1,∴函数f(x)的值域为(-1,1).
(3)由(1)可得f(x)=,当00,
∴当0令m=2x-1,0易知y=m-+1在m∈(0,1]上单调递增,
∴当m=1时y有最大值0,∴t≥0,
故t的取值范围是[0,+∞).
22.(本小题满分12分)已知函数f(x)=lg(1+x)-lg(1-x).
(1)求函数f(x)的定义域,并证明f(x)是定义域上的奇函数;
(2)用定义证明f(x)在定义域上是增函数;
(3)求不等式f(2x-5)+f(2-x)<0的解集.
(1)解 由对数函数的定义得得
即-1∴函数f(x)的定义域为(-1,1).
∵f(-x)=lg(1-x)-lg(1+x)=-f(x),
∴f(x)是定义域上的奇函数.
(2)证明 设-1则f(x1)-f(x2)=lg(1+x1)-lg(1-x1)-lg(1+x2)+lg(1-x2)=lg.
∵-10<1-x2<1-x1,
于是0<<1,0<<1,
则0<<1,∴lg<0.
∴f(x1)-f(x2)<0,即f(x1)是(-1,1)上的增函数.
(3)解 ∵f(x)在(-1,1)上是增函数且为奇函数,
∴不等式f(2x-5)+f(2-x)<0可转化为f(2x-5)<-f(2-x)=f(x-2),∴
解得2(时间:120分钟 满分:150分)
一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.函数f(x)=+的定义域是(  )
A.[-1,+∞)
B.(-∞,0)∪(0,+∞)
C.[-1,0)∪(0,+∞)
D.R
解析 解得-1≤x<0或x>0,区间表示为[-1,0)∪(0,+∞),故选C.
答案 C
2.下列函数中与函数y=x(x≥0)有相同图象的一个是(  )
A.y=
B.y=()2
C.y=
D.y=
解析 y==|x|,x∈R;y=()2=x,x≥0;y==x,x∈R;y==,x>0,所以选B.
答案 B
3.已知函数y=f(x)的图象如图所示,则该函数的减区间为(  )
A.(-3,-1)∪(1,4)
B.(-5,-3)∪(-1,1)
C.(-3,-1),(1,4)
D.(-5,-3),(-1,1)
解析 在某个区间上,若函数y=f(x)的图象是上升的,则该区间为增区间,若是下降的,则该区间为减区间,故该函数的减区间为(-3,-1),(1,4).
答案 C
4.已知函数f(x)=x2-mx+1是偶函数,则y=f(x)的单调增区间是(  )
A.(-1,+∞)
B.(0,+∞)
C.(1,+∞)
D.(2,+∞)
解析 因为函数f(x)=x2-mx+1是偶函数,所以y=f(x)的图象关于y轴对称,所以对称轴为直线x==0,解得m=0.所以f(x)=x2+1,所以y=f(x)的单调增区间是(0,+∞).
答案 B
5.已知f(x)是一次函数,且f[f(x)]=x+2,则f(x)=(  )
A.x+1
B.2x-1
C.-x+1
D.x+1或-x-1
解析 设f(x)=kx+b(k≠0),则f[f(x)]=k(kx+b)+b=k2x+kb+b=x+2,
∴∴故选A.
答案 A
6.已知函数f(x)=是R上的增函数,则a的取值范围是(  )
A.[-4,0)
B.(-∞,-2]
C.[-4,-2]
D.(-∞,0)
解析 ∵f(x)在R上为增函数,
∴需满足
即-4≤a≤-2,故选C.
答案 C
7.已知f(x)是定义在R上的奇函数,当x≥0,f(x)=x2+2x,若f(3-2a)>f(a),则实数a的取值范围是(  )
A.(-∞,-1)
B.(-∞,1)
C.(-1,+∞)
D.(1,+∞)
解析 当x≥0时,f(x)=x2+2x是增函数,又f(x)是定义在R上的奇函数,所以f(x)是R上的增函数,所以由f(3-2a)>f(a)得3-2a>a,解得a<1.
答案 B
8.二次函数f(x)=ax2+2a(a≠0)是区间[-a,a2]上的偶函数,又g(x)=f(x-1),则g(0),g,g(3)的大小关系为(  )
A.gB.g(0)C.gD.g(3)解析 由题意得解得a=1,
所以f(x)=x2+2,
所以g(x)=f(x-1)=(x-1)2+2.
因为函数g(x)的图象关于直线x=1对称,
所以g(0)=g(2).
又因为函数g(x)=(x-1)2+2在区间[1,+∞)上单调递增,
所以g所以g答案 A
二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,选对但不全的得3分,有选错的得0分)
9.下列说法中正确的有(  )
A.若x1,x2∈I,对任意的x1B.函数y=x2在R上是减函数
C.函数y=-在定义域上是增函数
D.y=的单调递减区间是(-∞,0)和(0,+∞)
解析 对于B,在(-∞,0]上是减函数;对于C,在整个定义域内不是增函数,如-3<5,而f(-3)>f(5),故不正确.
答案 AD
10.已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x-x2,则下列说法正确的是(  )
A.f(x)的最大值为
B.f(x)在(-1,0)上是增函数
C.f(x)>0的解集为(-1,1)
D.f(x)+2x≥0的解集为[0,3]
解析 x≥0时,f(x)=x-x2=-+,
∴f(x)的最大值为,A正确;f(x)在上是减函数,B错误;f(x)>0的解集为(-1,0)∪(0,1),C错误;x≥0时,f(x)+2x=3x-x2≥0的解集为[0,3],x<0时,f(x)+2x=x-x2≥0无解,故D正确.故选AD.
答案 AD
11.已知奇函数f(x)在(0,+∞)上是减函数,且在区间[a,b](aA.有最大值4
B.有最小值-4
C.有最大值3
D.有最小值-3
解析 法一 根据题意作出y=f(x)的简图,由图知,故选BC.
法二 当x∈[-b,-a]时,-x∈[a,b],
由题意得f(b)≤f(-x)≤f(a),
即-3≤-f(x)≤4,∴-4≤f(x)≤3,
即在区间[-b,-a]上f(x)min=-4,f(x)max=3,
故选BC.
答案 BC
12.已知函数f(x)=-x2+2x+1的定义域为(-2,3),则函数f(|x|)的单调递增区间是(  )
A.(-∞,-1)
B.(-3,-1)
C.(0,1)
D.(1,3)
解析 因为函数f(x)=-x2+2x+1的定义域为(-2,3),对称轴为直线x=1,开口向下,
所以函数f(|x|)满足-2<|x|<3,所以-3又f(|x|)=-x2+2|x|+1

且y=-x2-2x+1图象的对称轴为直线x=-1,
所以由二次函数的图象与性质可知,函数f(|x|)的单调递增区间是(-3,-1)和(0,1).故选BC.
答案 BC
三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)
13.已知f(x)=ax3+bx-4,其中a,b为常数,若f(-2)=2,则f(2)=________.
解析 设g(x)=ax3+bx,显然g(x)为奇函数,
则f(x)=ax3+bx-4=g(x)-4,
于是f(-2)=g(-2)-4=-g(2)-4=2,
所以g(2)=-6,所以f(2)=g(2)-4=-6-4=-10.
答案 -10
14.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x2+2,则函数f(x)=________,f(-4)=________(本题第一空3分,第二空2分).
解析 令x<0,则-x>0,∵x>0时,f(x)=x2+2,
∴f(-x)=(-x)2+2=x2+2,
又f(x)为定义在R上的奇函数,
∴f(x)=-f(-x)=-x2-2.
当x=0时,f(x)=0.
∴f(x)=
∴f(-4)=-(-4)2-2=-18.
答案  -18
15.函数y=f(x)在(-2,2)上为增函数,且f(2m)>f(-m+1),则实数m的取值范围是________.
解析 由题意知解得答案 
16.已知函数f(x)=若f(x)是R上的增函数,则实数a的取值范围为________.
解析 当x>1时,f(x)=x2是增函数,若f(x)是R上的增函数,则f(x)=x-1在(-∞,1]上是增函数,且满足×1-1≤12,因此解得4≤a<8.
答案 [4,8)
四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分10分)已知函数f(x)=
(1)求f(-1),f,f(4)的值;
(2)求函数的定义域、值域.
解 (1)易知f(-1)=0,f=-×=-,f(4)=3.
(2)作出图象如图所示.利用数形结合易知f(x)的定义域为[-1,+∞),值域为(-1,2]∪{3}.
18.(本小题满分12分)已知f(x)在R上是单调递减的一次函数,且f(f(x))=9x-2.
(1)求f(x);
(2)求函数y=f(x)+x2-x在x∈[-1,a]上的最大值.
解 (1)由题意可设f(x)=kx+b(k<0),
由于f(f(x))=9x-2,则k2x+kb+b=9x-2,
故解得故f(x)=-3x+1.
(2)由(1)知,函数y=-3x+1+x2-x=x2-4x+1=(x-2)2-3,
故函数y=x2-4x+1的图象开口向上,对称轴为x=2,
当-1当a>5时,y的最大值是f(a)=a2-4a+1,
综上,ymax=
19.(本小题满分12分)设函数f(x)=ax2+bx+1(a,b为实数),F(x)=
(1)若F(-1)=0且对任意实数x均有f(x)≥0成立,求F(x)的表达式;
(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围.
解 (1)由已知可知:
解得
则F(x)=
(2)由(1)可知f(x)=x2+2x+1,则g(x)=x2+2x+1-kx=x2+(2-k)x+1,
则g(x)的对称轴为x=.
由于g(x)在[-2,2]上是单调函数,
故≤-2或≥2,即k≤-2或k≥6.
即实数k的取值范围是(-∞,-2]∪[6,+∞).
20.(本小题满分12分)已知函数f(x)=,x∈[1,+∞).
(1)当a=时,求函数f(x)的最小值;
(2)若对任意的x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.
解 (1)当a=时,f(x)==x++2.
设任意x1,x2∈[1,+∞),且x1则f(x1)-f(x2)=-=,
因为x1,x2∈[1,+∞),x11,2x1x2-1>0,x1-x2<0,
所以<0,即f(x1)即函数f(x)在[1,+∞)上是增函数.
所以函数f(x)在[1,+∞)上的最小值为
f(1)=1++2=.
(2)因为f(x)=>0在[1,+∞)上恒成立,
所以x2+2x+a>0在[1,+∞)上恒成立.
记y=x2+2x+a,x∈[1,+∞),
所以y=(x+1)2+a-1在[1,+∞)上单调递增,故当x=1时,y取得最小值,最小值为3+a.
所以当3+a>0,即a>-3时,f(x)>0恒成立,
所以实数a的取值范围为(-3,+∞).
21.(本小题满分12分)已知函数y=f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.
(1)如图已画出函数y=f(x)在y轴左侧的图象,请补充完整函数y=f(x)的图象,并根据图象写出函数y=f(x)的增区间;
(2)写出函数y=f(x)的解析式和值域;
(3)若函数y=f(x)在[a,b](a解 (1)根据偶函数图象关于y轴对称的特点,可知函数y=f(x)的图象如图所示.
由图象可知函数的单调增区间是[-1,0],[1,+∞).
(2)设x>0,则-x<0,f(-x)=x2-2x.
∵y=f(x)是偶函数,∴f(x)=x2-2x,
∴f(x)=值域为{y|y≥-1}.
(3)若f(x)=3,则x=-3或x=3.
又f(-1)=f(1)=-1,
结合图象可知,当a=-3,-1≤b≤3时,
函数值域为[-1,3].此时2≤b-a≤6.
当b=3,-3≤a≤1时,函数值域为[-1,3].
此时,2≤b-a≤6,综上2≤b-a≤6.
22.(本小题满分12分)已知函数f(x)=是定义在(-1,1)上的奇函数,且f=.
(1)确定函数f(x)的解析式;
(2)用定义证明f(x)在(-1,1)上是增函数;
(3)解不等式:f(t-1)+f(t)<0.
解 (1)由题意,得
∴(经检验符合题意),故f(x)=.
(2)任取x1,x2∈(-1,1),且x1则f(x1)-f(x2)=eq
\f(x1,1+x)-eq
\f(x2,1+x)
=eq
\f((x1-x2)(1-x1x2),(1+x)(1+x)).∵-1∴x1-x2<0,1+x>0,1+x>0.
又-10.
∴eq
\f((x1-x2)(1-x1x2),(1+x)(1+x))<0,即f(x1)∴f(x)在(-1,1)上是增函数.
(3)由(2)知f(x)在(-1,1)上是增函数,又f(x)在(-1,1)上为奇函数,∴f(t-1)<-f(t)=f(-t),
∴解得0∴不等式的解集为{t|0章末复习课
[网络构建]
[核心归纳]
1.幂函数的图象与性质
单调性
在R上单增
在(-∞,0)上单减,在(0,+∞)上单增
在R上单增
在[0,+∞)上单增
在(-∞,0)和(0,+∞)上单减
在(-∞,0)上单增,在(0,+∞)上单减
图象
公共点
(0,0)(1,1)
(1,1)
2.指数函数的图象与性质
?
a>1
0图象
定义域
R
值域
(0,+∞)


过定点(0,1),即x=0时,y=1
当x>0时,y>1;当x<0时,0当x>0时,01
在(-∞,+∞)
上是增函数
在(-∞,+∞)
上是减函数
注意 (1)对于a>1与0(2)a>1时,a值越大,图象向上越靠近y轴,递增速度越快;0(3)在同一坐标系中有多个指数函数图象时,图象的相对位置与底数大小有如下关系:在y轴右侧,图象从上到下相应的底数由大变小;在y轴左侧,图象从下到上相应的底数由大变小,即无论在y轴的左侧还是右侧,底数按逆时针方向变大.这一性质可通过令x=1时,y=a去理解,如图.
3.对数函数的图象和性质
?
a>1
0图象
定义域
(0,+∞)
值域
R


当x=1时,y=0,即图象过定点(1,0)
当x>1时,y>0;当0当x>1时,y<0;当00
在(0,+∞)
上是增函数
在(0,+∞)
上是减函数
4.指数函数与对数函数的关系
对数函数y=logax(a>0且a≠1)与指数函数y=ax(a>0且a≠1)互为反函数,其图象关于直线y=x对称(如图).
要点一 函数的图象
函数图象的画法
画法
应用范围
画法技巧
基本函数法
基本初等函数
利用一次函数、反比例函数、二次函数、指数函数、对数函数的有关知识,画出特殊点(线),直接根据函数的图象特征作出图象
变换法
与基本初等函数有关联的函数
弄清所给函数与基本函数的关系,恰当选择平移、对称等变换方法,由基本函数图象变换得到函数图象
描点法
未知函数或较复杂的函数
列表、描点、连线
【例1】 (1)已知f(x)是函数y=log2x的反函数,则y=f(1-x)的图象是(  )
答案 (1)C (2)A
【训练1】 (1)在同一直角坐标系中,函数f(x)=xa(x≥0),g(x)=logax的图象可能是
(  )
解析 (1)幂函数f(x)=xa的图象不过(0,1)点,故A错误;B项中由对数函数f(x)=logax的图象知01,而此时幂函数f(x)=xa的图象应是增长越来越快的变化趋势,故C错误.
答案 (1)D (2)B
要点二 比较大小
数的大小比较常用方法:
(1)比较两数(式)或几个数(式)大小问题是本章的一个重要题型,主要考查指数函数、对数函数的图象与性质的应用及差值比较法与商值比较法的应用.常用的方法有单调性法、图象法、中间搭桥法、作差法、作商法.
(2)当需要比较大小的两个实数均是指数幂或对数式时,可将其看成某个指数函数、对数函数的函数值,然后利用该函数的单调性比较.
(3)比较多个数的大小时,先利用“0”和“1”作为分界点,即把它们分为“小于0”,“大于或等于0且小于或等于1”,“大于1”三部分,再在各部分内利用函数的性质比较大小.
【例2】 (多选题)若a>b>1,0A.ac>bc
B.abc>bac
C.logac>logbc
D.alogbc>blogac
解析 ∵0∵a>b>1,∴ac>bc,故A正确;
∵0∵a>b>1,∴bc-1>ac-1,又ab>0,∴abc>bac,故B正确;
∵0∵a>b>1,∴logcalogac>logbc,
故C正确;
由C知,0>logac>logbc,
∵a>b>1,∴alogbc答案 ABC
A.aB.cC.cD.b答案 A
要点三 指数型函数性质的综合问题
对于形如y=af(x)或y=f(ax)的复合函数,要注意转化思想的应用,将问题转化为我们熟悉的指数函数,一次函数、二次函数等问题去求解.通常研究函数的单调性、奇偶性、定义域、值域等性质.
(1)确定a的值;(2)求函数f(x)的定义域;(3)求函数f(x)的值域;(4)讨论函数f(x)的单调性.
(3)∵x≠0,∴2x-1>-1.
又∵2x-1≠0,∴-1<2x-1<0或2x-1>0,
(4)当x>0时,设0∵02x1-1>0,2x2-1>0,
∴f(x1)-f(x2)<0,即f(x1)【训练3】 设函数f(x)=ax-a-x(a>0且a≠1).
∴a>1,∴y=ax在R上单调递增,y=a-x在R上单调递减,
故f(x)在R上单调递增.
又∵f(-x)=a-x-ax=-f(x)且x∈R.
∴f(x)是R上的奇函数.
由f(-x2+7)+f(x-5)<0,
得f(-x2+7)∴-x2+7<5-x,解得x<-1或x>2,
∴不等式的解集为(-∞,-1)∪(2,+∞).
∴g(x)=22x+2-2x-4(2x-2-x)-m=(2x-2-x)2-4(2x-2-x)-m+2.
而t2-4t+2=(t-2)2-2≥-2,
∴m≤-2,∴m的最大值为-2.
要点四 对数型函数的性质
以对数函数y=logax(a>0,a≠1)的图象与性质为依托,以及利用对数函数的性质进行定义域、值域、单调性、奇偶性等问题的研究时,不要忘记对数中真数应大于0,以免扩大范围.
(1)求函数f(x)的解析式;
(2)判断f(x)的奇偶性;
(3)解关于x的不等式f(x)≥lg(3x+1).
解 (1)令t=x-1,则x=t+1,
所以f(x)为奇函数.
【训练4】 已知函数f(x)=loga(8-ax)(a>0,且a≠1).
(1)若f(x)<2,求实数x的取值范围;
(2)若f(x)>1在区间[1,2]上恒成立,求实数a的取值范围.
解 (1)当a>1时,由f(x)<2,得0<8-ax(2)当a>1时,f(x)=loga(8-ax)在[1,2]上是减函数,由f(x)>1恒成立,得f(x)min=loga(8-2a)>1,
当0由f(x)>1恒成立,得f(x)min=loga(8-a)>1,
且8-2a>0,
所以a>4,且a<4,故a不存在.