安徽省芜湖市皖江中学2020-2021学年高一上学期新生入学摸底考试数学试题 扫描版含答案

文档属性

名称 安徽省芜湖市皖江中学2020-2021学年高一上学期新生入学摸底考试数学试题 扫描版含答案
格式 zip
文件大小 3.9MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2020-09-10 07:35:41

文档简介

2020-2021学年度第一学期皖江中学高一新生入学摸底试卷
数学
参考答案
一、选择题(本大题共10小题,每小题4分,满分40分)
1~5:B
C
D
D
B
6~10:A
D
A
A
C
二、填空题(本大题共4小题,每小题5分,满分20分)
11.;
12.10;
13.5;
14.①③④
三、(本大题共2小题,每小题8分,满分16分)
15.
解:解不等式①得:
解不等式②得:
∴不等式组的解集为:…………7分
是不等式组的解……8分
16.
解:在,
……………………………2分

………………………………4分
…………………7分
∴快艇的速度为365米/分.………………………………8分
四、(本大题共2小题,每小题8分,满分16分)
17.解:设第一次购进套,则第二次购进套.
则有:
答:书店两次共购进600套…………(8分)
18.解:(1)(1,-3);………………………………3分
(2)图形略;……………………………………8分
五、(本大题共2小题,每小题10分,满分20分)
19.
解:(1)利用列表法得出所有可能的结果,如下表:
1
2
3
4
5
5
10
15
20
6
6
12
18
24
7
7
14
21
28
8
8
16
24
32
…………………………3分
由上表可知,该游戏所有可能的结果共16种,其中两卡片上的数字之积大于20的有5种,所以甲获胜的概率为.……………………………5分
(2)这个游戏对双方不公平,因为甲获胜的概率,乙获胜的概率,,所以,游戏对双方是不公平的.……………………………7分
规则修改答案不唯一,如:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于15,则甲获胜,否则乙获胜.
或者:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相加,如果得到的和为8,则甲获胜;和为10,则乙获胜.若数字之和既不是8,也不是10,则将卡片全部放回洗匀,再重复上述游戏.………………10分
20.
解:(1)小明速度是60米/分钟,……(1分)
……………………………………(2分)
1200………………………………………(3分)
(2)………………………………(7分)
(3)12分钟…………………………………(10分)
通过方程或一次函数等方法求解均可
六、(本题满分12分)
21.(1)证明:∵EF⊥BC,AC⊥BC
∴DE//AC…(2分)
∵BD=DC
,∴,∴BE=EA……………(4分)
∵DE垂直平分BC
,∴BE=CE,BF=CF……………(6分)
∵FC=AE
,∴BE=CE=BF=CF
∴四边形BECF是菱形…………………………………(8分)
(2)
解:当∠A=450时,四边形BECF是正方形。…(9分)
∵∠ABC=900-∠A=450
……………………………(10分)
又∵BC平分∠EBF
∴∠EBF=2∠ABC=900
…………………………(11分)
∴四边形BECF是正方形…………………………(12分)
七、(本题满分12分)
22.解:(1)∵OM=4,P到x轴的距离是4,
∴抛物线的对称轴为直线
设:抛物线的解析式为:……(1分)
∵抛物线过原点(0,0)
∴得,解得……(3分)
∴抛物线的解析式为,
即:…(4分)
(2)设C点横坐标为()
∵点D在抛物线上,∴D点坐标为

矩形ABCD的边长为,…(6分)
当矩形ABCD为正方形时,则有
解得
其中不合题意,应舍去
∴C点坐标为……(8分)
(3)……(10分)
∴当时,的最大值等于10…………………………(12分)
八、(本题满分14分)
23.解:(1)画图1,△DAE∽△EBC∽△CED.……2分
∵△DAE∽△EBC,∴
设AE=xcm,则BE=(5-x)cm
即………4分
解得,
∴AE的长为1cm
或4cm.………………6分
(2)对于任意的一个矩形,不一定存在,如正方形.
(答案不惟一,若学生画图说明即可.)
……8分
(3)注:本题共有两种情况,写出一种即可得满分,若写出两种,再赠送3分。
第一种情况:如图2,当∠DEC=90°时,△DAE∽△EBC∽△DEC………10分
过点E作EF⊥CD,垂足为F.………11分
∵△DAE∽△EBC∽△DEC
∴∠ADE=∠FDE,∠FCE=∠EBC………12分
∴AE=EF,EB=EF
∴AE=BE……………………………14分
第二种情况:如图2,当∠EDC=90°时,△DAE∽△CEB∽△CED……10分
∵点E是四边形ABCD的AB
边上的一个全相似点,
∠A=∠B=∠EDC=90°,
∴△ADE∽△BCE∽△DCE.
所以∠DEA=∠CEB=∠DEC=60°,………12分
说明DE=2AE,CE=2BE,CE=2DE,
即:2BE=2×2AE
所以BE=2AE.………………………………14分
第20题图
x
y
4
20
240
a
24
8
12
16
a
a
E
D
B
C
A
第21题图
F
A
B
C
D
O
M
H
P
x
y
D
B
A
C
第23题图2
E
F
第23题图1
A
B
D
C
E
D
B
A
C
第23题图3
E
PAGE
1310.做一个数字游戏:第一步:取一个自然数n1=5,计算n2+1得a1;第二步:算出a的
各位数字之和得n2,计算n2+1得a2:第三步:算出a2的各位数字之和得乃,计算乃2+1,
得a3;…,依此类推,则a202
的值为…
【】
A.17
B.26
D.122
二、填空题(本大题共4小题,每小题5分,满分20分)
11.化简,2m
m2-4m+2
12.如图是某班学生上学的三种方式(乘车、步行、骑车)的人数分布直方图和扇形图.若补
上人数分布直方图的空缺部分,则空缺的长方形所表示的人数为
13.如图,⊙0的半径为5cm,AB是⊙O的直径,D是AB延长线上一点,DC是⊙0的切线,
C是切点,连结AC,若∠CAB=30°,则BD的长为
车:0%
A
就/號
第13题图
第12题图
14.已知点A(1,-3)、B(-3,-3)关于直线1对称,开口向上的抛物线y=amx2+bx+c
以1为对称轴,且经过A、B两点,下面给出关于抛物线y=ax2+bx+c的几个结论:
①抛物线y=ax2+bx+c一定不经过原点
②当x=-1时,y最小=-3
③当x<-1时,y随着x的增大而减小
④当-3其中正确的结论的序号是
(在横线上填上你认为所有正确结论的序号)
解答题
15(本小题8分)求不等式数/-zx-2的解集,并判断x=-7是否是此不等式组
2
3-(x-1)>1-2x
的解
16(本小题8分)如图,在高出海平面1000米的山顶A处观测一艘在海平面上行驶的快艇,
快艇沿D、B、C三点所在的直线方向行进,快艇在D处时,测得它的俯角为30°,2
000米
分钾后又测得到达B处的快艇的佣角为45°,求该快艇的速度.(参考数据:√3≈1.73)
17(本小题8分)江南书店用32000元购进新版《三国演义》若干套,上架后很快脱销。该
书店又用68000元购进一批,所购套数是前次的数量的2倍,但每套进价多了10元求书店
两次共购进新版《三国演义》的套数
18(本小题8分)如图,已知△ABC的三个顶点的坐标分别为A(-2,3)、B(-60)、C(-10)
(1)经过怎样的平移,可使△ABC的顶点A与坐标原点0重合,并直接写出此时点C的
对应点C1坐标:(不必画出平移后的三角形)
(2)将△ABC绕坐标原点O逆时针旋转90°,
得到△A′B′C′,画出△A′B′C′
第18题图
19(本小题10分)有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片
上分别写有1、2、3、4四个数,另一个信封内的四张卡片分别写有5、6、7、8四个数,甲、
乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两
个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜
(1)请你通过列表(或画树状图)计算甲获胜的概率
(2)你认为这个游戏公平吗?如果公平,请说明理由;如果不公平,请设计一个游戏规则,
使游戏公平
20(本小题10分)周末,小明、小刚两人同时各自从家沿直线匀速步行到科技馆参加科技
创新活动,小明家、小刚家、科技馆在一条直线上,已知小明到达科技馆花了20分钟。设
两人出发x(分钟)后,小明离小刚家的距离为y(米),y与x的函数关系如图所示
(1)小明的速度为米/分钟,a=
,小明家离科技馆的距离为米
(2)已知小刚的步行速度是40米/分钟,设小刚步行时与家的距离为y1(米),请在图中画
出y1(米)与x(分钟)的函数图象
y(米
(3)小刚出发几分钟后两人在途中相遇?
24x(分钟)
第20飘图
同课章节目录