人教版数学七年级上册3.2解一元一次方程(一)——合并同类项与移项同步训练(Word版 含解析)

文档属性

名称 人教版数学七年级上册3.2解一元一次方程(一)——合并同类项与移项同步训练(Word版 含解析)
格式 docx
文件大小 157.0KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2020-09-12 16:20:39

图片预览

文档简介

人教版数学七年级上册
3.2解一元一次方程(一)——合并同类项与移项同步训练
一、单项选择题(下列选项中只有一个选项满足题意)
1.方程移项后正确的是(

A.
B.
C.
D.
2.若方程的解为-1,则的值为(
)
A.10
B.-4
C.-6
D.-8
3.若单项式2x2-ay1+b与﹣xay4是同类项,则a,b的值分别为(

A.a=3,b=1
B.a=﹣3,b=1
C.a=1,b=﹣3
D.a=1,b=3
4.下列方程中,解为x=2的方程是(

A.3x+3=x
B.-x+3=0
C.2x=6
D.5x-2=8
5.方程2y﹣=y﹣中被阴影盖住的是一个常数,此方程的解是y=﹣.这个常数应是(
)
A.1
B.2
C.3
D.4
6.方程的解为(

A.
B.
C.
D.
7.关于的方程的解为正整数,则整数的值为(

A.2
B.3
C.1或2
D.2或3
8.给出下面四个方程及其变形,其中变形正确的是()
①4(x+2)=0变形为x+2=0;②x+7=5–3x变形为4x=–2;
③x=3变形为2x=15;④8x=7变形为x=.
A.①③④
B.①②④
C.③④②
D.①②③
9.方程的解是(

A.
B.
C.
D.
10.解方程时,移项正确的是(

A.
B.
C.
D.
二、填空题
11.多项式化简后不含项,则k=_______.
12.当时,式子与的值相等,则的值是______.
13.若4x+2与3x﹣9的值互为相反数,则x的值为__.
14.当x=______时,代数式的值比的值大3.
三、综合计算题(要求写出必要的计算过程)
15.解方程:
(1);(2);
(3);(4).
16.已知代数式4x-5和3x-6的值相等,求x的值.
17.关于x的方程的解是负数,求字母k的值.
18.关于x的方程与的解互为相反数.
(1)求m的值;
(2)求这两个方程的解.
参考答案
1.D
【解析】
把3x移到等号左边,-4移到等号右边,注意移项要变号.
因为,
所以.
故选D.
本题主要考查解一元一次方程,关键是注意移项要变号.
2.C
【解析】
将代入原方程得到关于k的方程,求解即可.
将代入中,得,
解得,
故选C.
本题考查了一元一次方程的解和解方程,明确方程的解的定义是本题关键.
3.D
【解析】
根据同类项的定义,可以列出两个一元一次方程,解一元一次方程即可做出选择.
根据同类项的定义:所含的字母相同,并且相同字母的指数也相同的单项式叫做同类项,
故可得;,
解得a=1,b=3.
故选择D.
本题主要考查解一元一次方程及同类项定义,掌握一元一次方程的解法及同类项定义是解答本题的关键.
4.D
【解析】
逐一解出四个方程,即可得到答案.
解:
故A不符合题意;
故B不符合题意;
故C不符合题意;
故D符合题意.
故选D.
本题考查的解一元一次方程与方程的解的含义,掌握以上知识是解题的关键.
5.C
【解析】
设被阴影盖住的一个常数为k,原方程整理得,k=-y+,把代入k=-y+,中得,k=-×()+==3,故选C.
6.A
【解析】
方程移项合并,把x系数化为1,即可求出解.
方程移项合并得:x=-3,
故选A.
考查了解一元一次方程,解方程移项时注意要变号.
7.D
【解析】
此题可将原方程化为x关于a的二元一次方程,然后根据x>0,且x为整数来解出a的值.
ax+3=4x+1
x=,
而x>0
∴x=>0
∴a<4
∵x为整数
∴2要为4-a的倍数
∴a=2或a=3.
故选D.
此题考查的是一元一次方程的解,根据x的取值可以判断出a的取值,此题要注意的是x取整数时a的取值.
8.D
【解析】
试题分析:①4(x+2)=0两边同时除以4变形为x+2=0;②x+7=5﹣3x移项可变形为4x=﹣2;③x=3两边同时乘以5可变形为2x=15;④8x=7两边同时除以8可变形为x=.故选D.
9.C
【解析】
移项,合并同类项,系数化为1可得.
解:
故选C
考核知识点:解一元一次方程.掌握一般步骤是关键.
10.D
【解析】
利用等式的性质,根据移项要变号的法则变形即可.
解:方程移项得,
.
故选:D.
此题考查了解一元一次方程,熟练掌握移项法则是解本题的关键.
11.-3
【解析】
原式先去括号合并同类项,然后根据化简后不含项可得关于k的方程,解方程即得结果.
解:原式=,
∵原式化简后不含项,
∴,∴.
故答案为:﹣3.
本题考查了整式的加减运算和简单的一元一次方程的解法,属于常见题型,正确理解题意、熟练掌握整式的加减运算法则是关键.
12.-7
【解析】
把x=3代入两个式子即可表示出两个式子的值,就可得到一个关于k的方程,从而求得k的值.
解:由题意得:8
=15+k,
解得:k=-7,
故答案为:-7
本题要注意列出方程,求出未知数的值.
13.1
【解析】
解:∵4x+2与3x﹣9的值互为相反数,∴4x+2+3x-9=0,7x-7=0,7x=7,x=1.故答案为1.
点睛:根据互为相反数的两个数和为零,列出方程,进行解答.
14.2
【解析】
根据题意列出关于x的方程,求出x的值即可.
∵代数式5x+2的值比11-x的值大3,
∴5x+2-(11-x)=3,
去括号得,5x+2-11+
x
=3,
移项得,5x+x=3-2+11,
合并同类项得,6x=12,
系数化为1得,x=2.
故答案为2.
本题考查的是解一元一次方程,熟知解一元一次方程的基本步骤是解答此题的关键.
15.(1);(2);(3);(4)
【解析】
(1)先移项,再合并同类项,最后系数化为1即可.
(2)先移项,再合并同类项,最后系数化为1即可.
(3)先移项,再合并同类项,最后系数化为1即可.
(4)先移项,再合并同类项,最后系数化为1即可.
(1)移项,得.
合并同类项,得.
系数化为1,得.
(2)移项,得.
合并同类项,得.
系数化为1,得.
(3)移项,得.
合并同类项,得.
系数化为1,得.
(4)移项,得.
合并同类项,得.
系数化为1,得.
本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键.
16.x=-1.
【解析】
根据值相等列出方程,然后根据一元一次方程的求解方法,移项,合并同类项求解即可.
解:根据题意得,4x-5=3x-6,
移项得,4x-3x=-6+5,
合并同类项得,x=-1.
本题考查了解一元一次方程,注意移项要变号.
17.
【解析】
解一元一次方程可得,再根据解是负数,即可求字母k的值.


解得
∵方程的解是负数,


本题考查了一元一次方程的问题,掌握解一元一次方程的方法是解题的关键.
18.(1)(2)
【解析】
试题分析:(1)先求出第一个方程的解,然后根据互为相反数的和等于0列式得到关于m的方程,再根据一元一次方程的解法求解即可;
(2)把m的值代入两个方程的解计算即可.
解:(1)由x﹣2m=﹣3x+4得:x=m+1,
依题意有:m+1+2﹣m=0,
解得:m=6;
(2)由m=6,
解得方程x﹣2m=﹣3x+4的解为x=×6+1=3+1=4,…
解得方程2﹣m=x的解为x=2﹣6=﹣4.
考点:解一元一次方程.