25.3用频率估计概率-人教版九年级数学上册练习(Word版 含解析)

文档属性

名称 25.3用频率估计概率-人教版九年级数学上册练习(Word版 含解析)
格式 zip
文件大小 150.0KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2020-09-13 14:08:46

图片预览

文档简介

人教版九年级数学上册25.3用频率估计概率
一.选择题(共6小题)
1.某射击运动员在同一条件下的射击成绩记录如下:
射击次数
20
80
100
200
400
1000
“射中九环以上”的次数
18
68
82
168
327
823
“射中九环以上”的频率(结果保留两位小数)
0.90
0.85
0.82
0.84
0.82
0.82
根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是(  )
A.0.90
B.0.82
C.0.85
D.0.84
2.某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图所示的折线统计图,那么符合这一结果的实验最有可能的是(  )
A.掷一枚质地均匀的硬币,落地时结果是“正面向上”
B.掷一个质地均匀的正六面体骰子,落地时朝上的面点数是6
C.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”D.袋子中有1个红球和2个黄球,只有颜色上的区别,从中随机取出一个球是黄球
3.在一个不透明的口袋中,装有若干个红球和6个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,则估计盒子中大约有红球(  )
A.16个
B.14个
C.20个
D.30个
4.一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200次,其中有50次摸到红球.则此口袋中估计白球的个数是(  )个.
A.20
B.30
C.40
D.50
5.在做针尖落地的实验中,正确的是(  )
A.甲做了4000次,得出针尖触地的机会约为46%,于是他断定在做第4001次时,针尖肯定不会触地
B.乙认为一次一次做,速度太慢,他拿来了大把材料、形状及大小都完全一样的图钉,随意朝上轻轻抛出,然后统计针尖触地的次数,这样大大提高了速度
C.老师安排每位同学回家做实验,图钉自由选取
D.老师安排同学回家做实验,图钉统一发(完全一样的图钉).同学交来的结果,老师挑选他满意的进行统计,他不满意的就不要
6.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是(  )
A.从一个装有2个白球和1个红球的袋子中任取两球,取到两个白球的概率
B.任意写一个正整数,它能被2整除的概率
C.抛一枚硬币,连续两次出现正面的概率
D.掷一枚正六面体的骰子,出现1点的概率
二.填空题(共6小题)
7.技术变革带来产品质量的提升.某企业技术变革后,抽检某一产品2020件,欣喜发现产品合格的频率已达到0.9911,依此我们可以估计该产品合格的概率为 
 .(结果要求保留两位小数)
8.某种油菜籽在相同条件下发芽试验的结果如表:
每批粒数
50
100
300
400
600
1000
发芽的频数
45
96
283
380
571
948
这种油菜籽发芽的概率的估计值是 
 .(结果精确到0.01)
9.为保证口罩供应,某公司加紧转产,开设多条生产线争分夺秒赶制口罩,口罩送检合格率也不断提升,真正体现了“大国速度”,以下是质监局对一批口罩进行质量抽检的相关数据,统计如表:
抽检数量n/个
20
50
100
200
500
1000
2000
5000
10000
合格数量m/个
19
46
93
185
459
922
1840
4595
9213
口罩合格率
0.950
0.920
0.930
0.925
0.918
0.922
0.920
0.919
0.921
下列说法中:①当抽检口罩的数量是100个时,口罩合格的数量是93个,所以这批口罩中“口罩合格”的概率是0.930;②随着抽检数量的增加,“口罩合格”的频率总在0.920附近摆动,显示出一定的稳定性,所以可以估计这批口罩“口罩合格”的概率是0.920:③当抽检口罩的数量达到20000个时,“口罩合格”的频率一定是0.921;你认为合理的是 
 (填序号)
10.如图,大圆半径为6,小圆半径为2,在如图所示的圆形区域中,随机撒一把豆子,多次重复这个实验,若把“豆子落在小圆区域A中”记作事件W,请估计事件W的概率P(W)的值 
 .
11.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有 
 个.
12.在“抛掷正六面体”的试验中,如果正六面体的六个面分别标有数字“1”、“2”、“3”、“4”、“5”和“6”,如果试验的次数增多,出现数字“1”的频率的变化趋势是 
 .
三.解答题(共3小题)
13.在一只不透明的口袋里,装有若干个除了颜色外均相同的小球,某数学学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.如表是活动进行中的一组统计数据:
摸球的次数n
100
150
200
500
800
1000
摸到白球的次数m
59
96
b
295
480
601
摸到白球的频率
a
0.64
0.58
0.59
0.60
0.601
(1)上表中的a= 
 ,b= 
 ;
(2)“摸到白球的”的概率的估计值是 
 (精确到0.1);
(3)如果袋中有12个白球,那么袋中除了白球外,还有多少个其它颜色的球?
14.某家庭记录了未使用节水龙头50天的日用水量(单位:m3)和使用了节水龙头50天的日用水量,得到频数分布表如下:
表1:未使用节水龙头50天的日用水量频数分布表
日用水量x
0≤x<0.1
0.1≤x<0.2
0.2≤x<0.3
0.3≤x<0.4
0.4≤x<0.5
0.5≤x<0.6
0.6≤x≤0.7
频数
1
3
2
4
9
26
5
表2:使用了节水龙头50天的日用水量频数分布表
日用水量x
0≤x<0.1
0.1≤x<0.2
0.2≤x<0.3
0.3≤x<0.4
0.4≤x<0.5
0.5≤x<0.6
频数
1
5
13
10
16
5
(1)估计该家庭使用节水龙头后,日用水量小于0.3m3的概率;
(2)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在范围的组中值作代表.)
15.准备两组相同的牌,每组两张且大小一样,两张牌的牌面数字分别是1和2.从每组牌中各摸出一张牌,称为一次试验.
(1)一次试验中两张牌的牌面数字和可能有哪些值?
(2)两张牌的牌面数字和为几的概率最大?
(3)两张牌的牌面数字和等于3的概率是多少?
人教版九年级数学上册25.3用频率估计概率参考答案
一.选择题(共6小题)
1.某射击运动员在同一条件下的射击成绩记录如下:
射击次数
20
80
100
200
400
1000
“射中九环以上”的次数
18
68
82
168
327
823
“射中九环以上”的频率(结果保留两位小数)
0.90
0.85
0.82
0.84
0.82
0.82
根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是(  )
A.0.90
B.0.82
C.0.85
D.0.84
【解答】解:∵从频率的波动情况可以发现频率稳定在0.82附近,
∴这名运动员射击一次时“射中九环以上”的概率是0.82.
故选:B.
2.某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图所示的折线统计图,那么符合这一结果的实验最有可能的是(  )
A.掷一枚质地均匀的硬币,落地时结果是“正面向上”
B.掷一个质地均匀的正六面体骰子,落地时朝上的面点数是6
C.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
D.袋子中有1个红球和2个黄球,只有颜色上的区别,从中随机取出一个球是黄球
【解答】解:A、掷一枚质地均匀的硬币,落地时结果是“正面向上”的概率为,不符合题意;
B、掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率为,符合题意;
C、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率为,不符合题意;
D、袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球的概率,不符合题意;
故选:B.
3.在一个不透明的口袋中,装有若干个红球和6个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,则估计盒子中大约有红球(  )
A.16个
B.14个
C.20个
D.30个
【解答】解:由题意可得:=0.3,
解得:x=14,
故选:B.
4.一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200次,其中有50次摸到红球.则此口袋中估计白球的个数是(  )个.
A.20
B.30
C.40
D.50
【解答】解:设口袋中有x个白球,
由题意,得10:(10+x)=50:200;
解得:x=30.
把x=30代入10+x得,10+30=40≠0,故x=30是原方程的解.
答:口袋中约有30个白球.
故选:B.
5.在做针尖落地的实验中,正确的是(  )
A.甲做了4000次,得出针尖触地的机会约为46%,于是他断定在做第4001次时,针尖肯定不会触地
B.乙认为一次一次做,速度太慢,他拿来了大把材料、形状及大小都完全一样的图钉,随意朝上轻轻抛出,然后统计针尖触地的次数,这样大大提高了速度
C.老师安排每位同学回家做实验,图钉自由选取
D.老师安排同学回家做实验,图钉统一发(完全一样的图钉).同学交来的结果,老师挑选他满意的进行统计,他不满意的就不要
【解答】解:A、在做第4001次时,针尖可能触地,也可能不触地,故错误,不符合题意;
B、符合模拟实验的条件,正确,符合题意;
C、应选择相同的图钉,在类似的条件下实验,故错误,不符合题意;
D、所有的实验结果都是有可能发生,也有可能不发生的,故错误,不符合题意;
故选:B.
6.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是(  )
A.从一个装有2个白球和1个红球的袋子中任取两球,取到两个白球的概率
B.任意写一个正整数,它能被2整除的概率
C.抛一枚硬币,连续两次出现正面的概率
D.掷一枚正六面体的骰子,出现1点的概率
【解答】解:A、画树形图得:
所以从一个装有2个白球和1个红球的袋子中任取两球,取到两个白球的概率;故此选项正确;
B、任意写一个整数,它能2被整除的概率为;故此选项错误;
C、列表如下:



(正,正)
(反,正)

(正,反)
(反,反)
所以抛一枚硬币,连续两次出现正面的概率,故此选项错误;
D、掷一枚正六面体的骰子,出现1点的概率为,故此选项错误;
故选:A.
二.填空题(共6小题)
7.技术变革带来产品质量的提升.某企业技术变革后,抽检某一产品2020件,欣喜发现产品合格的频率已达到0.9911,依此我们可以估计该产品合格的概率为 0.99 .(结果要求保留两位小数)
【解答】解:∵抽检某一产品2020件,发现产品合格的频率已达到0.9911,
∴依此我们可以估计该产品合格的概率为0.99,
故答案为:0.99.
8.某种油菜籽在相同条件下发芽试验的结果如表:
每批粒数
50
100
300
400
600
1000
发芽的频数
45
96
283
380
571
948
这种油菜籽发芽的概率的估计值是 0.95 .(结果精确到0.01)
【解答】解:观察表格得到这种油菜籽发芽的频率稳定在0.95附近,
则这种油菜籽发芽的概率的估计值是0.95,
故答案为:0.95.
9.为保证口罩供应,某公司加紧转产,开设多条生产线争分夺秒赶制口罩,口罩送检合格率也不断提升,真正体现了“大国速度”,以下是质监局对一批口罩进行质量抽检的相关数据,统计如表:
抽检数量n/个
20
50
100
200
500
1000
2000
5000
10000
合格数量m/个
19
46
93
185
459
922
1840
4595
9213
口罩合格率
0.950
0.920
0.930
0.925
0.918
0.922
0.920
0.919
0.921
下列说法中:①当抽检口罩的数量是100个时,口罩合格的数量是93个,所以这批口罩中“口罩合格”的概率是0.930;②随着抽检数量的增加,“口罩合格”的频率总在0.920附近摆动,显示出一定的稳定性,所以可以估计这批口罩“口罩合格”的概率是0.920:③当抽检口罩的数量达到20000个时,“口罩合格”的频率一定是0.921;你认为合理的是 ② (填序号)
【解答】解:观察表格发现:随着试验的次数的增多,口罩合格率的频率逐渐稳定在0.920附近,
所以可以估计这批口罩中合格的概率是0.920,
故答案为:②.
10.如图,大圆半径为6,小圆半径为2,在如图所示的圆形区域中,随机撒一把豆子,多次重复这个实验,若把“豆子落在小圆区域A中”记作事件W,请估计事件W的概率P(W)的值  .
【解答】解:∵大圆半径为6,小圆半径为2,
∴S大圆=36π,S小圆=4π,
∴P(W)==,
故答案为:.
11.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有 6 个.
【解答】解:红球个数为:40×15%=6个.
故答案为:6.
12.在“抛掷正六面体”的试验中,如果正六面体的六个面分别标有数字“1”、“2”、“3”、“4”、“5”和“6”,如果试验的次数增多,出现数字“1”的频率的变化趋势是 接近 .
【解答】解:如果试验的次数增多,出现数字“1”的频率的变化趋势是接近.
三.解答题(共3小题)
13.在一只不透明的口袋里,装有若干个除了颜色外均相同的小球,某数学学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.如表是活动进行中的一组统计数据:
摸球的次数n
100
150
200
500
800
1000
摸到白球的次数m
59
96
b
295
480
601
摸到白球的频率
a
0.64
0.58
0.59
0.60
0.601
(1)上表中的a= 0.59 ,b= 116 ;
(2)“摸到白球的”的概率的估计值是 0.6 (精确到0.1);
(3)如果袋中有12个白球,那么袋中除了白球外,还有多少个其它颜色的球?
【解答】解:(1)a=59÷100=0.59,b=200×0.58=116.
故答案为:0.59,116
(2)“摸到白球的”的概率的估计值是0.6;
故答案为:0.6
(3)12÷0.6﹣12=8(个).
答:除白球外,还有大约8个其它颜色的小球;
14.某家庭记录了未使用节水龙头50天的日用水量(单位:m3)和使用了节水龙头50天的日用水量,得到频数分布表如下:
表1:未使用节水龙头50天的日用水量频数分布表
日用水量x
0≤x<0.1
0.1≤x<0.2
0.2≤x<0.3
0.3≤x<0.4
0.4≤x<0.5
0.5≤x<0.6
0.6≤x≤0.7
频数
1
3
2
4
9
26
5
表2:使用了节水龙头50天的日用水量频数分布表
日用水量x
0≤x<0.1
0.1≤x<0.2
0.2≤x<0.3
0.3≤x<0.4
0.4≤x<0.5
0.5≤x<0.6
频数
1
5
13
10
16
5
(1)估计该家庭使用节水龙头后,日用水量小于0.3m3的概率;
(2)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在范围的组中值作代表.)
【解答】解:(1)由表2可知,使用后,50天日用水量少于0.3的频数=1+5+13=19,
50天日用水量少于0.3的频概率=,从而以此频率估计该家庭情况.
(2)该家庭未使用节水龙头50天日用水量平均数:×(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48
该家庭使用节水龙头50天日用水量平均数:×(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35
∴估计使用节水龙头后,一年可节水:(0.48﹣0.35)×365=47.45
(m3)
15.准备两组相同的牌,每组两张且大小一样,两张牌的牌面数字分别是1和2.从每组牌中各摸出一张牌,称为一次试验.
(1)一次试验中两张牌的牌面数字和可能有哪些值?
(2)两张牌的牌面数字和为几的概率最大?
(3)两张牌的牌面数字和等于3的概率是多少?
【解答】解:画树状图得:
(1)一次试验中两张牌的牌面数字和可能有三种取值:和为2,和为3,和为4;
(2)由树状图可知,两张牌的牌面数字和为3的概率最大;
(3)∵共有4种等可能的结果,两张牌的牌面数字和是3的有2种情况,
∴两张牌的牌面数字和是3的概率是:=.