中小学教育资源及组卷应用平台
第23章旋转23.3课题学习图案设计(中考真题专练)
一、单选题
1.(2019·江苏南京中考真题)如图,△A′B′C′是由△ABC经过平移得到的,△A′B′C′还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是(
)
A.①④
B.②③
C.②④
D.③④
【答案】D
【解析】依据旋转变换以及轴对称变换,即可使△ABC与△A'B'C'重合.
【详解】解:先将△ABC绕着B'C的中点旋转180°,再将所得的三角形绕着B'C'的中点旋转180°,即可得到△A'B'C';
先将△ABC沿着C'C的垂直平分线翻折,再将所得的三角形沿着C''C'的垂直平分线翻折,即可得到△A'B'C';
故选D.
【点睛】本题主要考查了几何变换的类型,在轴对称变换下,对应线段相等,对应直线(段)或者平行,或者交于对称轴,且这两条直线的夹角被对称轴平分.在旋转变换下,对应线段相等,对应直线的夹角等于旋转角.
2.(2012·山东潍坊中考真题)甲乙两位同学用围棋子做游戏.如图所示,现轮到黑棋下子,黑棋下一子后白棋再下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形.则下列下子方法不正确的是(
).[说明:棋子的位置用数对表示,如A点在(6,3)]
A.黑(3,7);白(5,3)
B.黑(4,7);白(6,2)
C.黑(2,7);白(5,3)
D.黑(3,7);白(2,6)
【答案】C
【解析】分别根据选项所说的黑、白棋子放入图形,再由轴对称的定义进行判断即可得出答:
A、若放入黑(3,7),白(5,3),则此时黑棋是轴对称图形,白旗也是轴对称图形;
B、若放入黑(4,7);白(6,2),则此时黑棋是轴对称图形,白旗也是轴对称图形;
C、若放入黑(2,7);白(5,3),则此时黑棋不是轴对称图形,白旗是轴对称图形;
D、若放入黑(3,7);白(6,2),则此时黑棋是轴对称图形,白旗也是轴对称图形.
故选C.
3.(2018·四川广元中考真题)下面的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有(
)
A.4个
B.3个
C.2个
D.1个
【答案】A
【解析】试题分析:根据旋转、轴对称的定义来分析.
图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;
轴对称是指如果一个图形沿一条直线折叠,直线两侧的图形能够互相重合,就是轴对称.
解:图形1可以旋转90°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;
图形2可以旋转180°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;
图形3可以旋转180°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;
图形4可以旋转90°得到,也可以经过轴对称,沿一条直线对折,能够完全重合.
故既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有4个.
故选A.
点评:考查了旋转和轴对称的性质.①旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,两组对应点连线的交点是旋转中心;②轴对称图形的对应线段、对应角相等.
二、解答题
4.(2019·四川广安中考真题)在数学活动课上,王老师要求学生将图1所示的3×3正方形方格纸,剪掉其中两个方格,使之成为轴对称图形.规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)
请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个3×3的正方形方格画一种,例图除外)
【答案】见解析.
【解析】根据轴对称图形和旋转对称图形的概念作图即可得.
【详解】解:根据剪掉其中两个方格,使之成为轴对称图形;即如图所示:
【点睛】本题主要考查利用旋转设计图案,解题的关键是掌握轴对称图形和旋转对称图形的概念.
5.(2020·浙江宁波中考真题)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:
(1)使得4个阴影小等边三角形组成一个轴对称图形.
(2)使得4个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)
【答案】(1)见解析;(2)见解析
【解析】(1)根据轴对称图形的定义画出图形构成一个大的等边三角形即可(答案不唯一).
(2)根据中心对称图形的定义画出图形构成一个平行四边形即可(答案不唯一).
【详解】解:(1)轴对称图形如图1所示.
(2)中心对称图形如图2所示.
【点睛】本题考查利用中心对称设计图案,利用轴对称设计图案,解题的关键是理解题意,灵活运用所学知识解决问题.
6.(2019·浙江宁波中考真题)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:
(1)使得6个阴影小等边三角形组成一个轴对称图形。
(2)使得6个阴影小等边三角形组成一个中心对称图形。
(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)
【答案】(1)答案见解析;(2)答案见解析.
【解析】(1)直接利用轴对称图形的性质分析得出答案;
(2)直接利用中心对称图形的性质分析得出答案.
【详解】(1)解:画出下列其中一种即可
(2)解:画出下列其中一种即可
【点睛】此题主要考查了中心对称图形以及轴对称图形,正确把握相关定义是解题关键.
7.(2011·广西玉林中考真题)下图是2002年在北京举办的世界数学家大会的会标“弦图”,它既标志着中国古代的数学成就,又像一只转动着的风车,欢迎世界各地的数学家们.
请将“弦图”中的四个直角三角形通过你所学过的图形变换,在以下方格纸中设计另个两个不同的图案.画图要求:(1)每个直角三角形的顶点均在方格纸的格点上,且四个三角形到不重叠;(2)所设计的图案(不含方格纸)必须是中心对称图形或轴对称图形.
【答案】说明:每画对一个图案得4分,例如:
(2012·江西中考真题)如图,有两个边长为2的正方形,将其中一个正方形沿对角线剪开成两个全等的等腰直角三角形,用这三个图片分别在网格备用图的基础上(只要再补出两个等腰直角三角形即可),分别拼出一个三角形、一个四边形、一个五边形、一个六边形.
【答案】见解析
【解析】拼接三角形,让直角边与正方形的边重合,斜边在同一直线上即可;
拼接四边形,可以把两个直角三角形重新拼接成正方形,也可以拼接成等腰梯形,或平行四边形;
拼接五边形,只要让两个直角三角形拼接后多出一边即可;
拼接六边形,只要让拼接后的图形多出两条边即可.
如图所示,只要是符合图形即可.
9.(2017·四川广安中考真题)在4×4的方格内选5个小正方形,让它们组成一个轴对称图形,请在图中画出你的4种方案.(每个4×4的方格内限画一种)
要求:
(1)5个小正方形必须相连(有公共边或公共顶点式为相连)
(2)将选中的小正方行方格用黑色签字笔涂成阴影图形.(每画对一种方案得2分,若两个方案的图形经过反折、平移、旋转后能够重合,均视为一种方案)
【答案】(1)答案见解析;(2)答案见解析.
【解析】试题分析:利用轴对称图形的性质用5个小正方形组成一个轴对称图形即可.
试题解析:如图.
.
考点:利用旋转设计图案;利用轴对称设计图案;利用平移设计图案.
10.(2020·贵州黔西中考真题)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:
(1)下列图形是旋转对称图形,但不是中心对称图形的是________;
A.矩形
B.正五边形
C.菱形
D.正六边形
(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:________(填序号);
(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形,其中真命题的个数有(
)个;
A.0
B.1
C.2
D.3
(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.
【答案】(1)B;(2)(1)(3)(5);(3)C;(4)见解析
【解析】(1)根据旋转对称图形的定义进行判断;
(2)先分别求每一个图形中的旋转角,然后再进行判断;
(3)根据旋转对称图形的定义进行判断;
(4)利用旋转对称图形的定义进行设计.
【详解】解:(1)矩形、正五边形、菱形、正六边形都是旋转对称图形,但正五边形不是中心对称图形,
故选:B.
(2)是旋转对称图形,且有一个旋转角是60度的有(1)(3)(5).
故答案为:(1)(3)(5).
(3)①中心对称图形,旋转180°一定会和本身重合,是旋转对称图形;故命题①正确;
②等腰三角形绕一个定点旋转一定的角度α(0°<α≤180°)后,不一定能与自身重合,只有等边三角形是旋转对称图形,故②不正确;
③圆具有旋转不变性,绕圆心旋转任意角度一定能与自身重合,是旋转对称图形;故命题③正确;
即命题中①③正确,
故选:C.
(4)图形如图所示:
【点睛】本题考查旋转对称图形,中心对称图形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
21世纪教育网
www.21cnjy.com
精品试卷·第
2
页
(共
2
页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
第23章旋转23.3课题学习图案设计(中考真题专练)
一、单选题
1.(2019·江苏南京中考真题)如图,△A′B′C′是由△ABC经过平移得到的,△A′B′C′还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是(
)
A.①④
B.②③
C.②④
D.③④
2.(2012·山东潍坊中考真题)甲乙两位同学用围棋子做游戏.如图所示,现轮到黑棋下子,黑棋下一子后白棋再下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形.则下列下子方法不正确的是(
).[说明:棋子的位置用数对表示,如A点在(6,3)]
A.黑(3,7);白(5,3)
B.黑(4,7);白(6,2)
C.黑(2,7);白(5,3)
D.黑(3,7);白(2,6)
3.(2018·四川广元中考真题)下面的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有(
)
A.4个
B.3个
C.2个
D.1个
二、解答题
4.(2019·四川广安中考真题)在数学活动课上,王老师要求学生将图1所示的3×3正方形方格纸,剪掉其中两个方格,使之成为轴对称图形.规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)
请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个3×3的正方形方格画一种,例图除外)
5.(2020·浙江宁波中考真题)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:
(1)使得4个阴影小等边三角形组成一个轴对称图形.
(2)使得4个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)
6.(2019·浙江宁波中考真题)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:
(1)使得6个阴影小等边三角形组成一个轴对称图形。
(2)使得6个阴影小等边三角形组成一个中心对称图形。
(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)
7.(2011·广西玉林中考真题)下图是2002年在北京举办的世界数学家大会的会标“弦图”,它既标志着中国古代的数学成就,又像一只转动着的风车,欢迎世界各地的数学家们.
请将“弦图”中的四个直角三角形通过你所学过的图形变换,在以下方格纸中设计另个两个不同的图案.画图要求:(1)每个直角三角形的顶点均在方格纸的格点上,且四个三角形到不重叠;(2)所设计的图案(不含方格纸)必须是中心对称图形或轴对称图形.
【答案】说明:每画对一个图案得4分,例如:
(2012·江西中考真题)如图,有两个边长为2的正方形,将其中一个正方形沿对角线剪开成两个全等的等腰直角三角形,用这三个图片分别在网格备用图的基础上(只要再补出两个等腰直角三角形即可),分别拼出一个三角形、一个四边形、一个五边形、一个六边形.
9.(2017·四川广安中考真题)在4×4的方格内选5个小正方形,让它们组成一个轴对称图形,请在图中画出你的4种方案.(每个4×4的方格内限画一种)
要求:
(1)5个小正方形必须相连(有公共边或公共顶点式为相连)
(2)将选中的小正方行方格用黑色签字笔涂成阴影图形.(每画对一种方案得2分,若两个方案的图形经过反折、平移、旋转后能够重合,均视为一种方案)
10.(2020·贵州黔西中考真题)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:
(1)下列图形是旋转对称图形,但不是中心对称图形的是________;
A.矩形
B.正五边形
C.菱形
D.正六边形
(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:________(填序号);
(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形,其中真命题的个数有(
)个;
A.0
B.1
C.2
D.3
(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.
21世纪教育网
www.21cnjy.com
精品试卷·第
2
页
(共
2
页)
21世纪教育网(www.21cnjy.com)