5.7 三角函数的应用 练测评(新教材人教A版必修第一册)(Word含答案解析)

文档属性

名称 5.7 三角函数的应用 练测评(新教材人教A版必修第一册)(Word含答案解析)
格式 doc
文件大小 207.5KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2020-09-16 10:01:57

图片预览

文档简介

5.7 三角函数的应用
必备知识基础练
知识点一 三角函数在物理学中的应用
1.如图所示,一个单摆以OA为始边,OB为终边的角θ(-π<θ<π)与时间t(s)满足函数关系式θ=sin,t∈[0,+∞),则当t=0时,角θ的大小及单摆频率是(  )
A.2, B.,
C.,π D.2,π
2.交流电的电压E(单位:V)与时间t(单位:s)的关系可用E=220sin来表示,求:
(1)开始时电压;
(2)电压值重复出现一次的时间间隔;
(3)电压的最大值和第一次获得最大值的时间.
知识点二 三角函数在生活中的应用
3.已知某人的血压满足函数解析式f(t)=24sin(160πt)+115.其中f(t)为血压(mmHg),t为时间(min),则此人每分钟心跳的次数为(  )
A.60 B.70
C.80 D.90
4.如图所示的图象显示的是相对于平均海平面的某海湾的水面高度y(m)在某天24小时内的变化情况,则水面高度y关于从夜间0时开始的时间x的函数关系式为________,x∈[0,24].
5.通常情况下,同一地区一天的温度随时间变化的曲线接近函数y=Asin(ωx+φ)+b的图象.某年2月下旬某地区连续几天最高温度都出现在14时,最高温度为14 ℃;最低温度出现在凌晨2时,最低温度为零下2 ℃.
(1)求出该地区该时段的温度函数y=Asin(ωx+φ)+b(A>0,ω>0,|φ|<π,x∈[0,24))的表达式;
(2)29日上午9时某高中将举行期末考试,如果温度低于10 ℃,教室就要开空调,请问届时学校后勤应该开空调吗?
关键能力综合练
一、选择题
1.电流强度I(安)随时间t(秒)变化的函数I=Asin(A>0,ω≠0)的图象如图所示,则当t=秒时,电流强度是(  )
A.-5安       B.5安
C.5安       D.10安
2.商场人流量被定义为每分钟通过入口的人数,五一某商场的人流量满足函数F(t)=50+4sin(t≥0),则在下列哪个时间段内人流量是增加的?(  )
A.[0,5]   B.[5,10] C.[10,15]   D.[15,20]
3.据市场调查,某种商品一年内每件出厂价在7千元的基础上,按f(x)=Asin(ωx+φ)+b的模型波动(x为月份),已知3月份达到最高价9千元,7月份价格最低为5千元,根据以上条件可确定f(x)的解析式为(  )
A.f(x)=2sin+7(1≤x≤12,x∈N*)
B.f(x)=9sin(1≤x≤12,x∈N*)
C.f(x)=2sinx+7(1≤x≤12,x∈N*)
D.f(x)=2sin+7(1≤x≤12,x∈N*)
4.如图所示,有一广告气球,直径为6 m,放在公司大楼上空,当行人仰望气球中心的仰角∠BAC=30°时,测得气球的视角为2°(若β(弧度)很小时,可取sin β≈β),试估算该气球的高BC的值约为(  )
A.70 m   B.86 m C.102 m   D.118 m
5.稳定房价是我国今年实施宏观调控的重点,国家最近出台的一系列政策已对各地的房地产市场产生了影响,青岛市某房地产中介对本市一楼盘在今年的房价作了统计与预测:发现每个季度的平均单价y(每平方米的价格,单位:元)与第x季度之间近似满足:y=500sin(ωx+φ)+9 500(ω>0),已知第一、二季度平均单价如下表所示:
x 1 2 3
y 10 000 9 500 ?
则此楼盘在第三季度的平均单价大约是(  )
A.10 000元 B.9 500元
C.9 000元 D.8 500元
6.(易错题)如图所示,设点A是单位圆上的一定点,动点P从点A出发在圆上按逆时针方向旋转一周,点P所旋转过的弧的长为l,弦AP的长为d,则函数d=f(l)的图象大致是(  )
二、填空题
7.如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin+k.据此函数可知,这段时间水深(单位:m)的最大值为________m.
8.某时钟的秒针端点A到中心点O的距离为5 cm,秒针均匀地绕点O旋转,当时间t=0时,点A与钟面上标12的点B重合,将A,B两点的距离d(cm)表示成t(s)的函数,则d=________,其中t∈[0,60].
9.在物理学中,把物体受到的力(总是指向平衡位置)正比于它离开平衡位置的距离的运动称为“简谐运动”.可以证明,在适当的直角坐标系下,简谐运动可以用函数y=Asin(ωx+φ),x∈[0,+∞)表示,其中A>0,ω>0.如图,平面直角坐标系xOy中,以原点O为圆心,r为半径
作圆,A为圆周上的一点,以Ox为始边,OA为终边的角为α,则点A的坐标是________,从A点出发,以恒定的角速度ω转动,经过t秒转动到点B(x,y),动点B在y轴上的投影C作简谐运动,则点C的纵坐标y与时间t的函数关系式为________.
三、解答题
10.(探究题)如图所示,游乐场中的摩天轮匀速转动,每转一圈需要12分钟,其中心O距离地面40.5米,半径为40米.如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时,请解答下列问题:
(1)求出你与地面的距离y(米)与时间t(分钟)的函数关系式;
(2)当你第4次距离地面60.5米时,用了多长时间?
学科素养升级练
1.(多选题)水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征.如图是一个半径为R的水车,一个水斗从点A(3,-3)出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时60秒.经过t秒后,水斗旋转到P点,设P的坐标为(x,y),其纵坐标满足y=f(t)=Rsin(ωt+φ)(t≥0,ω>0,|φ|<).则下列叙述正确的是(  )
A.R=6,ω=,φ=-
B.当t∈[35,55]时,点P到x轴的距离的最大值为6
C.当t∈[10,25]时,函数y=f(t)单调递减
D.当t=20时,|PA|=6
2.动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知当时间t=0时,点A的坐标是,则当0≤t≤12时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是(  )
A.[0,1] B.[1,7]
C.[7,12] D.[0,1]和[7,12]
3.(学科素养—数学建模)为迎接夏季旅游旺季的到来,少林寺单独设置了一个专门安排旅客住宿的客栈,寺庙的工作人员发现为游客准备的食物有些月份剩余不少,浪费很严重,为了控制经营成本,减少浪费,就想适时调整投入.为此他们统计每个月入住的游客人数,发现每年各个月份来客栈入住的游客人数会发生周期性的变化,并且有以下规律:
①每年相同的月份,入住客栈的游客人数基本相同;
②入住客栈的游客人数在2月份最少,在8月份最多,相差约400人;
③2月份入住客栈的游客约为100人,随后逐月递增直到8月份达到最多.
(1)试用一个正弦型三角函数描述一年中入住客栈的游客人数与月份之间的关系;
(2)请问哪几个月份要准备400份以上的食物?
5.7 三角函数的应用
必备知识基础练
1.解析:当t=0时,θ=sin=,由函数解析式易知单摆周期为=π,故单摆频率为.
答案:B
2.解析:(1)当t=0时,E=220sin=110 V.
(2)电压值重复出现一次的时间间隔
T== s.
(3)电压的最大值为220 V.
第一次获得最大值的时间为
100πt+=,即t= s.
3.解析:由题意可得频率f===80(次/分),所以此人每分钟心跳的次数是80.
答案:C
4.解析:将其看成函数y=Asin(ωx+φ)的图象,由图象知,A=6,T=12,∴ω==.将(6,0)看成函数图象的第一个特殊点,则×6+φ=0,∴φ=-π.∴函数关系式为y=6sin=-6sinx.
答案:y=-6sinx
5.解析:(1)由题意知解得
易知=14-2,所以T=24,所以ω=,
易知8sin+6=-2,
即sin=-1,
故×2+φ=-+2kπ,k∈Z,
又|φ|<π,得φ=-,
所以y=8sin+6(x∈[0,24).
(2)当x=9时,y=8sin+6
=8sin+6<8sin+6=10.
所以届时学校后勤应该开空调.
关键能力综合练
1.解析:由图象可知A=10,T=2×=,
∴=,∴ω=100π.∴I=10sin.
当t=秒时,I=10sin=5(安).
答案:B
2.解析:由2kπ-≤≤2kπ+,k∈Z,知函数F(t)的增区间为[4kπ-π,4kπ+π],k∈Z.
当k=1时,t∈[3π,5π],而[10,15]?[3π,5π],故选C.
答案:C
3.解析:解法一 令x=3可排除D,令x=7,可排除B,由A==2可排除C.
解法二 由题意,可得A==2,b=7.
周期T==2×(7-3)=8.
∴ω=.
∴f(x)=2sin+7.
∵当x=3时,y=9,∴2sin+7=9.
即sin=1.
∵|φ|<,∴φ=-.
∴f(x)=2sin+7(1≤x≤12,x∈N*).
故选A.
答案:A
4.解析:在Rt△ADC中,CD=3 m,sin ∠CAD=,
∴AC=.①
∵∠CAD很小,1°= rad,
∴sin ∠CAD= rad.②
在Rt△ABC中,sin ∠CAB=sin 30°=,③
∴由①②③得BC≈86 m.
答案:B
5.解析:因为y=500sin(ωx+φ)+9 500(ω>0),
所以当x=1时,500sin(ω+φ)+9 500=10 000;
当x=2时,500sin(2ω+φ)+9 500=9 500,
所以ω可取,φ可取π,
即y=500sin+9 500.
当x=3时,y=9 000.
答案:C
6.解析:设所对的圆心角为α,则α=l,弦AP的长d=2·|OA|·sin,即有d=f(l)=2sin.
答案:C
7.解析:由题图可知-3+k=2,得k=5,∴y=3sin+5,
∴ymax=3+5=8.
答案:8
8.解析:将解析式可写为d=Asin(ωt+φ)的形式,由题意易知A=10,当t=0时,d=0,得φ=0;当t=30时,d=10,可得ω=,所以d=10sin.
答案:10sin
9.解析:由任意角三角函数的定义,A(rcos α,rsin α),
若从A点出发,以恒定的角速度ω转动,经过t秒转动到点B(x,y),则∠BOx=ωt+α,
点C的纵坐标y与时间t的函数关系式为y=rsin(ωt+α).
答案:A(rcos α,rsin α) y=rsin(ωt+α)
10.解析:(1)由已知可设y=40.5-40cos ωt,t≥0,由周期为12分钟可知,当t=6时,摩天轮第1次到达最高点,即此函数第1次取得最大值,所以6ω=π,即ω=,所以y=40.5-40cost(t≥0).
(2)设转第1圈时,第t0分钟时距离地面60.5米.由60.5=40.5-40cost0,得cost0=-,所以t0=或t0=,解得t0=4或t0=8,所以t=8(分钟)时,第2次距地面60.5米,故第4次距离地面60.5米时,用了12+8=20(分钟).
学科素养升级练
1.解析:由题意,R==6,T=60=,∴ω=,
点A(3,-3)代入可得-3=6sin φ,∵|φ|<,∴φ=-.故A正确;
f(t)=6sin,当t∈[35,55]时,t-∈,∴点P到x轴的距离的最大值为6,正确;
当t∈[10,25]时,t-∈,函数y=f(t)单调递减,不正确;
当t=20时,t-=,P的纵坐标为6,|PA|==6,正确,故选A,B,D.
答案:ABD
2.解析:由已知可得该函数具有周期性,其周期T=12,不妨设该函数为y=asin(ωx+φ),(A>0,ω>0),∴ω==.
又∵当t=0时,A,∴y=sin,t∈[0,12].可解得函数的单调递增区间是[0,1]和[7,12].
答案:D
3.解析:(1)设该函数为f(x)=Asin(ωx+φ)+B(A>0,ω>0,0<|φ|<π),根据条件①,可知这个函数的周期是12;由②可知,f(2)最小,f(8)最大,且f(8)-f(2)=400,故该函数的振幅为200;由③可知,f(x)在[2,8]上单调递增,且f(2)=100,所以f(8)=500.
根据上述分析可得,=12,
故ω=,且解得
根据分析可知,当x=2时,f(x)最小,
当x=8时,f(x)最大,
故sin=-1,且sin=1.
又因为0<|φ|<π,故φ=-.
所以入住客栈的游客人数与月份之间的关系式为
f(x)=200sin+300.
(2)由条件可知,200sin+300≥400,化简得
sin≥?2kπ+≤x-≤2kπ+,k∈Z,
解得12k+6≤x≤12k+10,k∈Z.
因为x∈N*,且1≤x≤12,所以x=6,7,8,9,10.
即只有6,7,8,9,10五个月份要准备400份以上的食物.