用动态规划来解背包问题
在历届NOIP竞赛中,有4道初赛题和5道复赛题均涉及到背包问题,所谓的背包问题,可以描述如下:一个小偷打劫一个保险箱,发现柜子里有N类不同大小与价值的物品,但小偷只有一个容积为M的背包来装东西,背包问题就是要找出一个小偷选择所偷物品的组合,以使偷走的物品总价值最大。
如有4件物品,容积分别为: 3 4 5 8
对应的价值分别为: 4 5 7 10
小偷背包的载重量为:12
则取编号为1 2 3的物品,得到最大价值为16。
算法分析:如果采用贪心法,则先取价值最大的10,消耗了容积8,下面只能取容积为4的物品,得到价值5,这样总价值是15,这不是最优解,因此贪心法是不正确的。
采用穷举法,用一个B数组来表示取数的标记,当B=0时表示第i件物品不取,当B=1时表示第i件物品已取,初始化全部取0,以下算法是从后面的物品开始取起,通过B数组的取值把15种取法全部穷举出来,价值MAX初始化为0。
B[0] B[1] B[2] B[3] B[4]
0 0 0 0 0 {初始化}
0 0 0 0 1 {取第4件物品,容积为8,不超,价值为10,将MAX替换为10}
0 0 0 1 0 {取物品3,容积为5,不超,价值为7,不换}
0 0 0 1 1 {取物品3、4,容积为13,超}
0 0 1 0 0 {取物品2,容积为4,不超,价值为5,不换}
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
……
0 1 1 1 0 {这是最佳方案}
0 1 1 1 1
1 0 0 0 0 {当B〔0〕=1时停止,B〔0〕称为哨兵}
生成B数组中数据的方法如下:
fillchar(b,sizeof(b),0);
while b[0]=0 do
begin j:=n;
while b[j]=1 do dec(j);
b[j]:=1;
for i:=j+1 to n do
b:=0;
end;
小结:以上每件物品只能取1件,所以取法只有0和1两种情况,我们称之为0、1背包,算法的时间复杂度为O(2N),在1秒内N只能做到20。
例1:选数(NOIP2002 初中组复赛第2题)
[问题描述]:已知 n 个整数 x1,x2,…,xn,以及一个整数 k(k<n)。从 n 个整数中任选 k 个整数相加,可分别得到一系列的和。例如当 n=4,k=3,4 个整数分别为 3,7,12,19 时,可得全部的组合与它们的和为:
3+7+12=22 3+7+19=29 7+12+19=38 3+12+19=34。
现在,要求你计算出和为素数共有多少种。
例如上例,只有一种的和为素数:3+7+19=29。
[输入]:
键盘输入,格式为:
n , k (1<=n<=20,k<n)
x1,x2,…,xn (1<=xi<=5000000)
n[输出]:
屏幕输出,格式为:
一个整数(满足条件的种数)。
[输入输出样例]:
输入:
4 3
3 7 12 19
输出:
1
[算法分析]:本题应用背包问题中取数的方法进行穷举,在取数的过程中,当B数组中有K个1的时候将对应的K个数相加,再判断是不是素数。
主要程序段如下:
readln(n,k); sum:=0;
for i:=1 to n do read(a);
fillchar(b,sizeof(b),0);
while b[0]=0 do
begin j:=n;
while b[j]=1 do dec(j);
b[j]:=1;
for i:=j+1 to n do b:=0;
m:=0;
for i:=1 to n do
if b=1 then m:=m+1; {统计1的个数}
if m=k then
begin 计算此种取数方法得到的和S;
if S 是素数 then sum:=sum+1;
end;
end;
例2:采药(NOIP2005 初中组复赛第3题)
【问题描述】
辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”
如果你是辰辰,你能完成这个任务吗?
【输入文件】
输入文件medic.in的第一行有两个整数T(1 <= T <= 1000)和M(1 <= M <= 100),用一个空格隔开,T代表总共能够用来采药的时间,M代表山洞里的草药的数目。接下来的M行每行包括两个在1到100之间(包括1和100)的整数,分别表示采摘某株草药的时间和这株草药的价值。
【输出文件】
输出文件medic.out包括一行,这一行只包含一个整数,表示在规定的时间内,可以采到的草药的最大总价值。
【样例输入】
70 3
71 100
69 1
1 2
【样例输出】
3
【数据规模】
对于30%的数据,M <= 10;
对于全部的数据,M <= 100。
【算法分析】本题如果采用上述方法来解,只能将M算到20,而这里M〈=100,所以只能拿30%的分数,比较好的算法是采用动态规划,为了能说清算法,现重新举一个例子,若输入:
10 3
3 4
4 5
5 6
表示背包的容量是10,有3种物品。用一个数组用来表示背包容量与其最大价值的关系,上例中设置一个数组count,用下标表示容量,初始化为0。然后按物品的顺序一一来统计此时的最大价值,每种药品对应各种背包容量时得到的最大价值为:
对于是第i件物品,背包容量为j时的最大价值Cmax(j)=MAX(Cmaxj,Pi+余下空间的最大价值Cmax(j-i物品所占的空间)),如上例中,根据物品的不断增加,各容量背包得到的最大价值不断替换:
容量 1 2 3 4 5 6 7 8 9 10
价值
序号 0 0 0 0 0 0 0 0 0 0
1 0 0 4 4 4 4 4 4 4 4
2 0 0 4 5 5 5 9 9 9 9
3 0 0 4 5 6 6 9 10 11 11
[数据结构] time,price数组分别用来存入时间和价值,count来存入背包的价值。
var
time,price:array[1..100] of longint;
t:longint; i,m,j:integer;
count:array[0..1000] of longint;
begin
assign(input,'medic.in');
assign(output,'medic.out');
reset(input);
rewrite(output);
readln(t,m);
for i:=1 to m do
readln(time,price);
fillchar(count,sizeof(count),0);
for i:=1 to m do
for j:=t downto 1 do
begin
if (j>=time) and (price+count[j-time]>count[j]) then
count[j]:=price+count[j-time];
end; {j>=time表示当前的容量能放入背包,price+count[j-time]>count[j]表示第i件物品的价值加上第i件物品对于背包容量为j时余下空间的最大价值大于当前背包容量为j时的最大价值}
writeln(count[t]);
close(input);
close(output);
end.
例3:开心的金明(NOIP2006 初中组复赛第2题)
题目较长,省略,本题与例2相比,在比较时要先将价值乘以一个数,其余一样,但要注意的是:本题N的范围是<=26,如果用0、1背包穷举法在1秒内只能过10个点中的8个点。
总结:采用动态规划的时间复杂度为O(n*m),范围比穷举法大多了,但也有弱点,当数据不是整数时,就不可使用;如果还要求出具体的取法,那也相当麻烦。