工程问题
教学内容:
42~45
教学目标:
1)使学生理解“工程问题”的解题思路。
????
2)会解答较简单的工程问题。
?????3)培养学生合作探究的意识。
教学重点:会解答较简单的工程问题。
教学难点:分析例7的数量关系。
教具准备:多媒体课件、卡片
教学设计:
一、复习
师:同学们,我们回忆一下,以前学过的做工问题涉及到哪三种量?
生:工作总量、工作效率、工作时间。
师:那它们的关系又如何呢?(课件出示)
生:工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
师:请打开课本42,我们先来完成“做中学”。
(课件出示)
1、(1)一本书4天看完,平均每天看这本书的(
)。
(2)一本书每天看
,看完这本需要(
)天。
2、修一段600米长的公路,甲工程队单独做20天完成,由乙工程队单独做30天完成,两队合作多少天完成?
生:600
÷20=30(米)
600
÷30=20(米)
600
÷(30+20)
=600
÷50
=12(天)
二、导入新课,揭示课题。
师:如果不给出具体的工作总量,该怎么解决呢?这就是我们今天要学习的工程问题。(师板书:工程问题)
师:什么是工程呢?就是我们平常所看到的建房子,修公路,造桥,运货等等这些都可统称为“工程”。
三、探究交流,学习新知。
1、出示例7。(课件出示)
一项工程,由甲工程队单独需12天完成,由乙工程队单独做需18天完成,两队合做需多少天完成?
师:那怎样理解什么是独做?什么是合做?我们先来演示一下,我们就以同学的课桌的长度为一项工程,以笔的运作为工作效率,同桌分别扮演甲乙工程队,独做就是一个同学从左运作到右,另一个同学从右运作到左。合做就是两个同学相向运作,直到相遇表示这项工程完成了。同学们看看,完成一项工程是独做的快还是合做的快?
(同学们紧张有序的动手操作)
师:同学们,你们得出的结论是……
生:合做的快。
师:对,这就像我们平时做值日工作一样,如果只有一个人做,需要的时间就长,如果几个人一起做,需要的时间就短。这也像建设祖国一样,只靠一个人的力量是有限的,如果我们大家齐心协力,就会把祖国建设得更加美丽,更加富强,团结就是力量,是吧?(渗透思想教育)
2、师:同学们再动动脑筋,看哪个小组又对又快地讨论出下面的问题?(播放轻松的音乐,学生在音乐声中讨论。教师巡视,对个别组辅导)
学生以四人小组为单位进行讨论。(课件出示)
1)题目里没有具体的工作总量,可用什么来表示工作总量?
2)甲队每天完成工程的几分之分?
3)乙队每天完成工程的几分之几?
4)两队合做,每天完成工程的几分之几?
5)两队合做,需几天完成?
学生汇报:
生1::题目里没有具体的工作总量,可用单位“1”来表示工作总量。
生2:甲队每天完成工程的。
生3:乙队每天完成工程的。
生4:两队合做,每天完成工程的。
生5:两队合做,需12天完成。
师:谁再来说说12天是根据哪个数量关系式得来的?
生1::工作总量÷工效和=工作时间
生2:工作总量÷工效和=工作时间
师:对,这就是我们今天新学的关系式,
师板书:工作总量÷工效和=工作时间
答:两队合做需12天完成。
准备题:
修一段600米长的公路,甲工程队单独做20天完成,由乙工程队单独做30天完成,两队合作多少天完成?
一项工程,由甲工程队单独做需20天完成,由乙工程队单独做需30天完成,两队合做需多少天完成?
生1::相同点是甲乙独做的时间相同,问题也相同。不同点是工作总量不同。
生2:相同点都是利用了同一个数量关系式,不同点是准备题的工作总量是具休的数量,而例5的工作总量是用单位“1”来表示,工作效率用单位“1”的几分之一来表示。
师:你说的真棒,大家为他鼓掌。
4、师:谁能说说工程问题的特点是什么?
生:工作总量可用单位“1”来表示,工作效率用单位“1”的几分之一来表示。
师:你归纳得真好,真是爱动脑筋的好学生。
5、同学们,你们能不能用今天学习的知识解答准备题吗?(课件出示)
修一段600米长的公路,甲工程队单独做20天完成,由乙工程队单独做30天完成,两队合作多少天完成?
(叫两个同学上黑板演示,其它学生在草稿本上试完成,然后教师评讲)(课件出示)
1÷(+
=1÷
=12(天)
师:我们学了两种方法,哪种方法简单?
生:把工作总量看作单位“1”的较简单。
师:对,以后我们可以选择你喜欢的一种方法来解答。
四、反馈练习,(课件出示)
师:同学们学得很好,表现很棒,现在我们来练习一下。
1、我是小法官,对错我来判。
修一座300米的桥,甲队单独做要5个月完成,乙队单独做要6个月完成,
1)甲队单独每月完成这座桥的。(
)
2)乙队单独每月完成这座桥的。(
)
3)甲队单独做,每月修60米。(
)
4)两队合做,几天完成的列式是:300÷(5+6)。(
)
5)两队合做,几天完成的列式是:1÷(
+)。(
)
2、你来露一手,完成课本P85的练一练。
加工一批服装,第一车间单独做6小时完成,第二车间单
独做8小时完成,两车间合作几小时可以完成?
3、根据所给的条件,你还能提出其他问题吗?
一批零件,甲单独做6天完成,乙单独做5天完成,丙单独做8天完成。
……
比一比,选一选
一堆货物,甲单独运6小时可以运完,车单独运8小时可以完成
现在甲两车合运这批货物的 ,需要多少时可以完成?正确的列式是:(
)
A:1÷(
)
B:÷(
)
我是小小工程师:
实验小学要修建餐厅和教师宿舍楼,要求半年内完工,现在正在进行工程的招标,甲工程队单独需要8个月,乙工程队单独需10个月,为了尽快完成任务,请你帮学校设计一个方案。
设计的方案是:
五、归纳总结。(课件出示)
1)通过这节课的探索,你有什么收获?
2)你还有什么想法或疑问要给老师和同学说的吗?
师:同学们说一说,这节课自已表现如何?哪个同学的表现值得大家学习?
板书:
工程问题
工作总量÷工效和=工作时间
1÷(+
=1÷
=12(天)
答:两队合做需12天完成。
工程问题练习课
教学目标:
1、经历工程问题的笼统化过程,进一步感知它的发生。
2、复习巩固工程问题的一般解决战略。同时通过联想熟悉的事件解决与此相类似的数学问题,进而进行类比数学思想的渗透。
3、在基本解决简单工程问题的基础上进行拓展练习。
教学过程:
课前谈话。同学们,在数学这门学科里,大家最感到头痛的是什么?(解决问题)同学们还知道在这门学科里最有价值的是什么?(解决问题)它能让我们感受到数学的价值,体验到学习的快乐与胜利。
一、感知工程问题的特征和发生的原因。
1、出示课件。上面显示以下习题。
1盘柏公路长8千米,单独修甲队40天完成,乙队单独做50天修完,两队合修多少天完成?
2盘达公路长20千米,单独修甲队40天完成,乙队单独做50天修完,两队合修多少天完成?
3柏达公路长28千米,单独修甲队40天完成,乙队单独做50天修完,两队合修多少天完成?
4一段路,单独修甲队40天完成,乙队单独做50天修完,两队合修多少天完成?
请同学们先认真观察这几个题有什么特征,再冷静地考虑一下,看谁能最快解答出来?(教师巡视,发现那么没有一个一个解答的同学,只解答一个的同学。然后让这位同学汇报原因,直击中心两队每天的工作量(占总共的几分之几没发生变化)从而得出这一段路的长度可以有多种数量表示,我们可以把它们看作“单位1”来进行解答。对这些同学进行大力褒扬。
二、复习基本解决战略。
1、出示例题。一项工程,甲队单独做20天完成,乙队单独做15天完成,假如两队合做多少天可以完成总共的
?
1先认真读题,独立考虑(理清思路)完成习题。
2汇报交流。要求说出解题思路。通常有综合法和分析法两种。
3假如同学回答较好,则不必出示解题思路,假如不是很好则出示。而且要布置一个习题让同学做后进行交流说出自身的解题思路。
解题思路:我是这样想的。甲队单独做20天完成,就可以想到甲队每天做的(也就是甲队的工作效率)占总共的
;乙队单独15天完成,就可以想到乙队每天做的(也就是乙的工作效率)占总共的
。甲乙两队合作一天就是甲队每天修的
和乙队每天修的
,也就是
+
。用两队完成总工程的
,除以两队每天完成总共的
+
,就可以得到需要多少天。
÷(
+
)
像这种从条件入手解决问题的战略称为综合法。
我还可以这样想:要想求出甲乙合作多少天完成总共的
,就必需找出甲乙合作的工作总量(
)和甲乙合作一天的工作效率的和(
+
),然后根据工作总量÷工作效率和=合作时间
÷(
+
)像这种从问题入手解决问题的战略称为分析法。
4练习题。