(共27张PPT)
三角形的面积
人教版五年级上册第六单元
一、复习
长方形面积=长X宽
正方形面积=边长X边长
平行四边形面积=底X高
?
三角形面积
“割补”
法
底
高
长方形面积
=
长
×
宽
平行四边形面积=
底
高
×
返回
回忆一下,我们是怎样推导出平行四边形面积的计算公式的?
怎样算出红领巾的面积呢?
能不能把三角形也转化成学过的图形?
我们试一试。
返回
平行四边形(新)
长方形(旧)
转化(割补)
推导
联系
三角形(新)
已学过的图形(旧)
返回
1.掌握三角形的面积计算公式,并能正确计算三角形的面积。
2.能运用三角形的面积计算公式解决实际问题。
学习目标
1.摆一摆、拼一拼试着用手里的三角形学具拼成一个平行四边形或长方形。
2.观察拼成的平行四边形和原来的三角形,你发现了什么?
自学提纲
动手操作
准备活动物品:
拼接法:
返回
底
高
锐角三角形:
底
高
底
高
平行四边形的面积
=
底
×
高
2个三角形的面积
底
高
三角形的面积
=
底×高÷2
返回
三、合作探究
底
高
钝角三角形:
底
高
平行四边形的面积
=
底
×
高
2个三角形的面积
底
高
三角形的面积
=
底×高÷2
返回
底
高
直角三角形:
底
高
平行四边形的面积
=
底
×
高
2个三角形的面积
底
高
三角形的面积
=
底×高÷2
返回
底
高
底
高
直角三角形:
平行四边形的面积
=
底
×
高
2个三角形的面积
底
高
三角形的面积
=
底×高÷2
返回
小结
只要是两个完全一样的三角形,我们就能把
它们拼成一个平行四边形或长方形、正方形,充
分论证了三角形的面积
=
底×高÷2。
底
高
底
高
底
高
底
高
底
高
底
高
底
高
底
高
返回
只用一个三角形就可以推导出三角形的面积计算公式,你们想知道吗?
割补法:
返回
割补法一:
底
高
平行四边形的面积
=
底
×
高′
三角形的面积
底(高÷2)
三角形的面积
=
底×高÷2
返回
割补法二:
底
高
长方形的面积
=
长×宽
三角形的面积
底(高÷2)
三角形的面积
=
底×高÷2
返回
割补法三:
底
高
长方形的面积
=
长
×
宽
三角形的面积的一半(底÷2)(高÷2)
三角形的面积
=
底
×
高÷2
返回
小结
只要是运用相应的方法把一个三角形割补或折
叠后,我们就能把它们转化成一个平行四边形或长
方形,充分论证了三角形的面积=底×高÷2。
底
高
底
高
底
高
返回
字母表示:
如果用S表示三角形的面积,用a表示三角形
的底,用h表示三角形底边上的高,三角形的面
积公式可以写成:
S=ah÷2
h
a
返回
红领巾的底是100cm,高33cm,它的面积
是多少平方厘米?
S
=
ah÷2
=
100×33÷2
=
1650(cm2)
答:它的面积是1650cm2。
例题2
100cm
33cm
返回
第一关.我会算
返回
四、闯关练习
3X4÷2=6(
cm?
)
4X0.9÷2=1.8(
dm?
)
2.5X2.8÷2=3.5(m?)
(1)两个完全一样的三角形能拼成(
),所以三角形的面积等于(
),用字母表示是(
)。
(2)一个三角形的底是5厘米,高是7厘米,它的面积是(
)。
第二关.我会填
第三关.我会用
一个平行四边形的底是6分米,高是4分米,从中剪出一个最大的三角形,这个三角形的面积是多少平方厘米?
6X4÷2=12(
)
12dm?=1200cm?
dm?
一块玻璃的形状是一个三角形,它的底是12.5dm,高是7.8dm。每平方米玻璃的价钱是68元,买这块玻璃要用多少钱?
已知条件、要求问题分别是什么?
已知条件
要求问题
如何计算,涉及到哪些公式?
7.8dm
12.5dm
返回
第四关、拓展练习
先求这块三角形玻璃的面积,再求总价钱。
涉及到的公式有:
三角形的面积
=
底×高÷2
总价
=
单价×数量
在此题中指这块玻璃的面积
返回
7.8dm
12.5dm
12.5×7.8÷2=
48.75(dm2)
48.75
dm2
=
0.4875
m2
68×0.4875
=
33.15(元)
12.5×7.8÷2÷100×68
=
33.15(元)
可简写成:
答:买这块玻璃要用33.15元。
返回
三角形的面积
=
底×高÷2
S=ah÷2
h
a
返回
这节课你有哪些收获?