人教版九年级上册数学中考真题分类(选择题)专练:24.4扇形面积综合 (word 版 含解析)

文档属性

名称 人教版九年级上册数学中考真题分类(选择题)专练:24.4扇形面积综合 (word 版 含解析)
格式 zip
文件大小 297.8KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2020-09-20 19:27:56

图片预览

文档简介

人教版九年级上册数学中考真题分类(选择题)专练:
24.4扇形面积
1.(2020?西藏)如图,AB为半圆O的直径,C为半圆上的一点,OD⊥AC,垂足为D,延长OD与半圆O交于点E.若AB=8,∠CAB=30°,则图中阴影部分的面积为(  )
A.π﹣
B.π﹣2
C.π﹣
D.π﹣2
2.(2020?沈阳)如图,在矩形ABCD中,AB=,BC=2,以点A为圆心,AD长为半径画弧交边BC于点E,连接AE,则的长为(  )
A.
B.π
C.
D.
3.(2020?大庆)底面半径相等的圆锥与圆柱的高的比为1:3,则圆锥与圆柱的体积的比为(  )
A.1:1
B.1:3
C.1:6
D.1:9
4.(2020?云南)如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是(  )
A.
B.1
C.
D.
5.(2020?东营)用一个半径为3,面积为3π的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为(  )
A.π
B.2π
C.2
D.1
6.(2020?毕节市)如图,已知点C,D是以AB为直径的半圆的三等分点,弧CD的长为π,则图中阴影部分的面积为(  )
A.π
B.π
C.π
D.π+
7.(2020?包头)如图,AB是⊙O的直径,CD是弦,点C,D在直径AB的两侧.若∠AOC:∠AOD:∠DOB=2:7:11,CD=4,则的长为(  )
A.2π
B.4π
C.
D.π
8.(2020?湖北)一个圆锥的底面半径是4cm,其侧面展开图的圆心角是120°,则圆锥的母线长是(  )
A.8cm
B.12cm
C.16cm
D.24cm
9.(2020?山西)中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到AC=BD=12cm,C,D两点之间的距离为4cm,圆心角为60°,则图中摆盘的面积是(  )
A.80πcm2
B.40πcm2
C.24πcm2
D.2πcm2
10.(2020?青海)如图是一个废弃的扇形统计图,小明同学利用它的阴影部分制作一个圆锥,则这个圆锥的底面半径是(  )
A.3.6
B.1.8
C.3
D.6
11.(2020?咸宁)如图,在⊙O中,OA=2,∠C=45°,则图中阴影部分的面积为(  )
A.﹣
B.π﹣
C.﹣2
D.π﹣2
12.(2020?攀枝花)如图,直径AB=6的半圆,绕B点顺时针旋转30°,此时点A到了点A',则图中阴影部分的面积是(  )
A.
B.
C.π
D.3π
13.(2020?泰州)如图,半径为10的扇形AOB中,∠AOB=90°,C为上一点,CD⊥OA,CE⊥OB,垂足分别为D、E.若∠CDE为36°,则图中阴影部分的面积为(  )
A.10π
B.9π
C.8π
D.6π
14.(2020?乐山)在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分面积为(  )
A.
B.
C.
D.π
15.(2020?苏州)如图,在扇形OAB中,已知∠AOB=90°,OA=,过的中点C作CD⊥OA,CE⊥OB,垂足分别为D、E,则图中阴影部分的面积为(  )
A.π﹣1
B.﹣1
C.π﹣
D.﹣
16.(2020?聊城)如图,AB是⊙O的直径,弦CD⊥AB,垂足为点M,连接OC,DB.如果OC∥DB,OC=2,那么图中阴影部分的面积是(  )
A.π
B.2π
C.3π
D.4π
17.(2020?聊城)如图,有一块半径为1m,圆心角为90°的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为(  )
A.m
B.m
C.m
D.m
18.(2020?黔东南州)如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧,再分别以E、F为圆心,1为半径作圆弧、,则图中阴影部分的面积为(  )
A.π﹣1
B.π﹣2
C.π﹣3
D.4﹣π
19.(2020?铁岭)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,以BC为直径的半圆O交斜边AB于点D,则图中阴影部分的面积为(  )
A.π﹣
B.π﹣
C.π﹣
D.π﹣
20.(2020?济南)如图,在菱形ABCD中,点E是BC的中点,以C为圆心、CE为半径作弧,交CD于点F,连接AE、AF.若AB=6,∠B=60°,则阴影部分的面积为(  )
A.9﹣3π
B.9﹣2π
C.18﹣9π
D.18﹣6π
参考答案
1.解:∵OD⊥AC,
∴∠ADO=90°,=,AD=CD,
∵∠CAB=30°,OA=4,
∴OD=OA=2,AD=OA=2,
∴图中阴影部分的面积=S扇形AOE﹣S△ADO=﹣×2=﹣2,
故选:D.
2.解:∵四边形ABCD是矩形,
∴AD=BC=2,∠B=90°,
∴AE=AD=2,
∵AB=,
∴cos∠BAE==,
∴∠BAE=30°,
∴∠EAD=60°,
∴的长==,
故选:C.
3.解:设圆锥和圆柱的底面圆的半径为r,圆锥的高为h,则圆柱的高为3h,
所以圆锥与圆柱的体积的比=(×πr2×h):(πr2×3h)=1:9.
故选:D.
4.解:设圆锥的底面圆的半径为r,
根据题意可知:
AD=AE=4,∠DAE=45°,
底面圆的周长等于弧长:
∴2πr=,
解得r=.
答:该圆锥的底面圆的半径是.
故选:D.
5.解:根据圆锥侧面展开图是扇形,
扇形面积公式:S=πrl(r为圆锥的底面半径,l为扇形半径),得
3πr=3π,
∴r=1.
所以圆锥的底面半径为1.
故选:D.
6.解:连接CD、OC、OD.
∵C,D是以AB为直径的半圆的三等分点,
∴∠AOC=∠COD=∠DOB=60°,AC=CD,
又∵OA=OC=OD,
∴△OAC、△OCD是等边三角形,
∴∠AOC=∠OCD,
∴CD∥AB,
∴S△ACD=S△OCD,
∵弧CD的长为,
∴=,
解得:r=1,
∴S阴影=S扇形OCD==.
故选:A.
7.解:∵∠AOC:∠AOD:∠DOB=2:7:11,∠AOD+∠DOB=180°,
∴∠AOD=×180°=70°,∠DOB=110°,∠COA=20°,
∴∠COD=∠COA+∠AOD=90°,
∵OD=OC,CD=4,
∴2OD2=42,
∴OD=2,
∴的长是==,
故选:D.
8.解:圆锥的底面周长为2π×4=8πcm,即为展开图扇形的弧长,
由弧长公式得=8π,
解得,R=12,即圆锥的母线长为12cm.
故选:B.
9.解:如图,连接CD.
∵OC=OD,∠O=60°,
∴△COD是等边三角形,
∴OC=OD=CD=4cm,
∴S阴=S扇形OAB﹣S扇形OCD=﹣=40π(cm2),
故选:B.
10.解:设这个圆锥的底面半径为r,
根据题意得2πr=,
解得r=3.6,
即这个圆锥的底面半径是3.6.
故选:A.
11.解:∵∠C=45°,
∴∠AOB=90°,
∴S阴影=S扇形AOB﹣S△AOB
=﹣
=π﹣2.
故选:D.
12.解:∵半圆AB,绕B点顺时针旋转30°,
∴S阴影=S半圆A′B+S扇形ABA′﹣S半圆AB
=S扇形ABA′

=3π,
故选:D.
13.解:连接OC,
∵∠AOB=90°,CD⊥OA,CE⊥OB,
∴四边形CDOE是矩形,
∴CD∥OE,
∴∠DEO=∠CDE=36°,
由矩形CDOE易得到△DOE≌△CEO,
∴∠COB=∠DEO=36°
∴图中阴影部分的面积=扇形OBC的面积,
∵S扇形OBC==10π
∴图中阴影部分的面积=10π,
故选:A.
14.解:∵∠ABC=90°,∠BAC=30°,BC=1,
∴AB=BC=,AC=2BC=2,
∴﹣﹣=,
故选:B.
15.解:∵CD⊥OA,CE⊥OB,
∴∠CDO=∠CEO=∠AOB=90°,
∴四边形CDOE是矩形,
连接OC,
∵点C是的中点,
∴∠AOC=∠BOC,
∵OC=OC,
∴△COD≌△COE(AAS),
∴OD=OE,
∴矩形CDOE是正方形,
∵OC=OA=,
∴OE=1,
∴图中阴影部分的面积=﹣1×1=﹣1,
故选:B.
16.解:连接OD,BC,
∵CD⊥AB,OC=OD,
∴DM=CM,∠COB=∠BOD,
∵OC∥BD,
∴∠COB=∠OBD,
∴∠BOD=∠OBD,
∴OD=DB,
∴△BOD是等边三角形,
∴∠BOD=60°,
∴∠BOC=60°,
∵DM=CM,
∴S△OBC=S△OBD,
∵OC∥DB,
∴S△OBD=S△CBD,
∴S△OBC=S△DBC,
∴图中阴影部分的面积==2π,
故选:B.
17.解:设底面半径为rm,则2πr=,
解得:r=,
所以其高为:=(m),
故选:C.
18.解:由题意可得,
阴影部分的面积是:?π×22﹣﹣2(1×1﹣?π×12)=π﹣2,
故选:B.
19.解:∵在Rt△ABC中,∠ACB=90°,∠A=30°,
∴∠B=60°,
∴∠COD=120°,
∵BC=4,BC为半圆O的直径,
∴∠CDB=90°,
∴OC=OD=2,
∴CD=BC=2,
图中阴影部分的面积=S扇形COD﹣S△COD=﹣2×1=﹣,
故选:A.
20.解:连接AC,
∵四边形ABCD是菱形,
∴AB=BC=6,
∵∠B=60°,E为BC的中点,
∴CE=BE=3=CF,△ABC是等边三角形,AB∥CD,
∵∠B=60°,
∴∠BCD=180°﹣∠B=120°,
由勾股定理得:AE==3,
∴S△AEB=S△AEC=×6×3×=4.5=S△AFC,
∴阴影部分的面积S=S△AEC+S△AFC﹣S扇形CEF=4.5+4.5﹣=9﹣3π,
故选:A.