第3章
概率的进一步认识
一.选择题
1.数学老师拿出四张卡片,背面完全一样,正面分别画有:矩形、菱形、等边三角形、圆背面朝上洗匀后先让小明抽出一张,记下形状后放回,洗匀后再让小亮抽出一张请你计算出两次都抽到既是中心对称图形又是轴对称图形的概率是( )
A.
B.
C.
D.
2.太原是我国生活垃圾分类的46个试点城市之一,垃圾分类的强制实施也即将提上日程.根据规定,我市将垃圾分为了四类:可回收垃圾、餐厨垃圾、有害垃圾和其他垃圾.现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投入进两个不同的垃圾桶,投放正确的概率是( )
A.
B.
C.
D.
3.如图,转盘的红色扇形圆心角为120°.让转盘自由转动2次,指针1次落在红色区域,1次落在白色区域的概率是( )
A.
B.
C.
D.
4.如图,有一电路AB是由图示的开关控制,闭合a,b,c,d,e五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是( )
A.
B.
C.
D.
5.骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)一个质地均匀的正方形骰子的六个面分别刻有1至6的点数,将骰子抛掷两次,掷第一次,将朝上一面的点数记为x,掷第二次,将朝上一面的点数记为y,则点(x,y)落在直线y=﹣x+5上的概率为( )
A.
B.
C.
D.
6.一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为了估计白球数,小刚向其中放入了8个黑球,搅匀后从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球400次,其中80次摸到黑球,你估计盒中大约有白球( )
A.32个
B.36个
C.40个
D.42个
7.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同,小明通过多次摸球试验后发现,其中摸到白色球的频率稳定在85%左右,则口袋中红色球可能有( )
A.34个
B.30个
C.10个
D.6个
8.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为( )
A.
B.
C.
D.
9.一个不透明的袋子中装有20个红球和若干个白球,这些球除了颜色外都相同,若小英每次从袋子中随机摸出一个球,记下颜色后再放回,经过多次重复试验,小英发现摸到红球的频率逐渐稳定于0.4,则小英估计袋子中白球的个数约为( )
A.50
B.30
C.12
D.8
10.如图A是某公园的进口,B,C,D是三个不同的出口,小明从A处进入公园,那么从B,C,D三个出口中恰好在C出口出来的概率为( )
A.
B.
C.
D.
二.填空题
11.一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是
.
12.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车先后经过这个十字路口,则至少有一辆汽车向左转的概率是
.
13.有4张看上去无差别的卡片,正面分别写着1,2,4,5,洗匀随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是
.
14.大成蔬菜公司以2.1元/千克的成本价购进10000kg番茄,公司想知道番茄的损坏率,从所有随机抽取若干进行统计,部分结果如表:
番茄总质量m(kg)
100
200
300
400
500
10000
损坏番茄质量m(kg)
10.60
19.42
30.63
39.24
49.54
101.10
番茄损坏的频率
0.106
0.097
0.102
0.098
0.099
0.101
估计这批番茄损坏的概率为
(精确到0.1),据此,若公司希望这批番茄能获得利润15000元,则销售时(去掉损坏的番茄)售价应至少定为
元/千克.
15.在一个不透明的布袋中装有黄、白两种颜色的球共40个,除颜色外其他都相同,小王通过多次摸球试验后发现,摸到黄球的频率稳定在0.35左右,则布袋中黄球可能有
个.
三.解答题
16.为了解疫情期间学生网络学习的学习效果,东坡中学随机抽取了部分学生进行调查.要求每位学生从“优秀”,“良好”,“一般”,“不合格”四个等次中,选择一项作为自我评价网络学习的效果.现将调查结果绘制成如图两幅不完整的统计图,请结合图中所给的信息解答下列问题:
(1)这次活动共抽查了
人.
(2)将条形统计图补充完整,并计算出扇形统计图中,学习效果“一般”的学生人数所在扇形的圆心角度数.
(3)张老师在班上随机抽取了4名学生,其中学习效果“优秀”的1人,“良好”的2人,“一般”的1人,若再从这4人中随机抽取2人,请用画树状图法,求出抽取的2人学习效果全是“良好”的概率.
17.为全面贯彻党的教育方针,坚持“健康第一”的教育理念,促进学生健康成长,提高体质健康水平,成都市调整体育中考实施方案:分值增加至60,男1000米(女800米)必考,足球、篮球、排球“三选一”…,从2019年秋季新入学的七年级起开始实施.某中学为了解七年级学生对三大球类运动的喜爱情况,从七年级学生中随机抽取部分学生进行调查问卷,通过分析整理绘制了如下两幅统计图.请根据两幅统计图中的信息回答下列问题:
(1)求参与调查的学生中,喜爱排球运动的学生人数,并补全条形图;
(2)若该中学七年级共有400名学生,请你估计该中学七年级学生中喜爱篮球运动的学生有多少名?
(3)若从喜爱足球运动的2名男生和2名女生中随机抽取2名学生,确定为该校足球运动员的重点培养对象,请用列表法或画树状图的方法求抽取的两名学生为一名男生和一名女生的概率.
18.一次安全知识测验中,学生得分均为整数,满分10分,成绩达到9分为优秀,这次测验中甲、乙两组学生人数相同,成绩如下两个统计图:
(1)在乙组学生成绩统计图中,8分所在的扇形的圆心角为度;
(2)请补充完整下面的成绩统计分析表:
平均分
方差
众数
中位数
优秀率
甲组
7
1.8
7
7
20%
乙组
1.36
10%
(3)你认为哪组的成绩较好?从以上信息中写出两条支持你的选择.
(4)从甲乙两组得9分的学生中抽取两人参加市级比赛,求这两人来自不同组的概率.
19.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成图1的条形统计图和图2扇形统计图,但均不完整.请你根据统计图解答下列问题:
(1)求参加比赛的学生共有多少名?并补全图1的条形统计图.
(2)在图2扇形统计图中,m的值为
,表示“D等级”的扇形的圆心角为
度;
(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.
20.某商场开业,为了活跃气氛,用红、黄、蓝三色均分的转盘设计了两种抽奖方案,凡来商场消费的顾客都可以选择一种抽奖方案进行抽奖.
方案一:转动转盘一次,指针落在红色区域可领取一份奖品;
方案二:转动转盘两次,指针落在不同颜色区域可领取一份奖品,你会选择哪个方案?请用相关的数学知识说明理由.
参考答案
一.选择题
1.
C.
2.
C.
3.
C.
4.
C.
5.
C.
6.
A.
7.
D.
8.
A.
9.
B.
10.
B.
二.填空题
11.
.
12.
.
13.
.
14.0.1,4.
15.
14.
三.解答题
16.解:(1)这次活动共抽查的学生人数为80÷40%=200(人);
故答案为:200;
(2)“不合格”的学生人数为200﹣40﹣80﹣60=20(人),
将条形统计图补充完整如图:
学习效果“一般”的学生人数所在扇形的圆心角度数为360°×=108°;
(3)把学习效果“优秀”的记为A,“良好”记为B,“一般”的记为C,
画树状图如图:
共有12个等可能的结果,抽取的2人学习效果全是“良好”的结果有2个,
∴抽取的2人学习效果全是“良好”的概率==.
17.解:(1)由题意可知调查的总人数=12÷20%=60(人),
所以喜爱排球运动的学生人数=60×35%=21(人)
补全条形图如图所示:
(2)∵该中学七年级共有400名学生,
∴该中学七年级学生中喜爱篮球运动的学生有400×(1﹣35%﹣20%)=180名;
(3)画树状图为:
共有12种等可能的结果数,其中抽取的两人恰好是一名男生和一名女生结果数为8,
所以抽取的两人恰好是一名男生和一名女生概率==.
18.解(1)8分所在的扇形的圆心角的度数为360°×(1﹣20%﹣20%10%﹣10%)=144°;
(2)乙组的平均分是:8×40%+7×20%+6×20%+5×10%+9×10%=7.2(分),
乙组的众数是
8,
乙组的中位数是
7.5.
故答案为144°,7.2,8,7.5;
(2)乙组好.
因为乙组的众数高于甲组;乙组的中位数高于甲组;
(3)乙组得9分的人数为10%×10=1(人),
画树状图为:
共
6
种等可能的结果,其中来自不同组的结果数为4,
P(来自不同的组)==.
19.解:(1)根据题意得:3÷15%=20(人),
∴参赛学生共20人,
则B等级人数20﹣(3+8+4)=5人.
补全条形图如下:
(2)C等级的百分比为×100%=40%,即m=40,
表示“D等级”的扇形的圆心角为360°×=72°,
故答案为:40,72.
(3)列表如下:
男
女
女
男
(男,女)
(男,女)
女
(女,男)
(女,女)
女
(女,男)
(女,女)
所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,
则P(恰好是一名男生和一名女生)==.
20.解:选择方案二;
∵方案一获奖的概率为,
方案二中出现的可能性如下表所示:
共有9种不同的情况,其中指针落在不同颜色区域的可能性为=;
∵>,
∴选择方案二.