【同步推荐】2011—2012学年数学苏教版必修2同步教学案:第1章 立体几何(7份)

文档属性

名称 【同步推荐】2011—2012学年数学苏教版必修2同步教学案:第1章 立体几何(7份)
格式 zip
文件大小 2.9MB
资源类型 教案
版本资源 苏教版
科目 数学
更新时间 2011-09-09 19:47:03

文档简介

1.2.3 直线与平面的位置关系
第1课时 至厦门与平面平行的判定
【课时目标】 1.理解直线与平面平行的判定定理的含义,会用图形语言、文字语言、符号语言准确描述直线与平面平行的判定定理;2.能运用直线与平面平行的判定定理证明一些空间线面关系的简单问题.
1.一条直线和一个平面的位置关系有且只有以下三种:
位置关系 直线a在平面α内 直线a与平面α相交 直线a与平面α平行
公共点 有无数个公共点 有且只有一个公共点 没有公共点
符号表示 a α a∩α=A a∥α
图形表示
我们把直线a与平面α相交或平行的情况统称为__________________,记作________.
2.直线与平面平行的判定定理:
如果平面外一条直线和________________________平行,那么这条直线和这个平面平行.
用符号表示为a α,b α且a∥b a∥α.
一、填空题
1.以下说法(其中a,b表示直线,α表示平面)正确的个数为________.
①若a∥b,b α,则a∥α;
②若a∥α,b∥α,则a∥b;
③若a∥b,b∥α,则a∥α;
④若a∥α,b α,则a∥b.
2.已知a,b是两条相交直线,a∥α,则b与α的位置关系是________.
3.如果平面α外有两点A、B,它们到平面α的距离都是a,则直线AB和平面α的位置关系是______________________________________________________________________.
4.在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=CF∶FB=1∶3,则对角线AC和平面DEF的位置关系是________.
5.过直线l外两点,作与l平行的平面,则这样的平面为____________个.
6.过平行六面体ABCD-A1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有________条.
7.经过直线外一点有________个平面与已知直线平行.
8.如图,在长方体ABCD-A1B1C1D1的面中:
(1)与直线AB平行的平面是______________;
(2)与直线AA1平行的平面是______________;
(3)与直线AD平行的平面是______________.
9.在正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与过点A,E,C的平面的位置关系是__________________________________________________________________.
二、解答题
10.如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱BC、C1D1的中点.
求证:EF∥平面BDD1B1.
11.如图所示,P是 ABCD所在平面外一点,E、F分别在PA、BD上,且PE∶EA=BF∶FD.
求证:EF∥平面PBC.
能力提升
12.下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥面MNP的图形的序号是________.(写出所有符合要求的图形序号)
13.正方形ABCD与正方形ABEF所在平面相交于AB,在AE,BD上各有一点P,Q,且AP=DQ.求证PQ∥平面BCE.(用两种方法证明)
直线与平面平行的判定方法
(1)利用定义:证明直线a与平面α没有公共点.这一点直接证明是很困难的,往往借助于反证法来证明.
(2)利用直线和平面平行的判定定理:a α,a∥b,b α,则a∥α.使用定理时,一定要说明“不在平面内的一条直线和平面内的一条直线平行”,若不注明和平面内的直线平行,证明过程就不完整.因此要证明a∥平面α,则必须在平面α内找一条直线b,使得a∥b,从而达到证明的目的.证明线线平行时常利用三角形中位线、平行线分线段成比例定理等.
1.2.3 直线与平面的位置关系
第1课时 直线与平面平行的判定
答案
知识梳理
1.直线在平面外 a α
2.这个平面内的一条直线
作业设计
1.0
解析 ①a α也可能成立;②a,b还有可能相交或异面;③a α也可能成立;④a,b还有可能异面.
2.b∥α或b与α相交
3.平行或相交
4.平行 5.0,1或无数
6.12
解析 如图所示,与BD平行的有4条,与BB1平行的有4条,四边形GHFE的对角线与面BB1D1D平行,同等位置有4条,总共12条.
7.无数
8.(1)平面A1C1和平面DC1 (2)平面BC1和平面DC1 (3)平面B1C和平面A1C1
9.平行
解析 设BD的中点为F,则EF∥BD1.
10.证明 取D1B1的中点O,
连结OF,OB.
∵OF綊B1C1,BE綊B1C1,
∴OF綊BE.
∴四边形OFEB是平行四边形,
∴EF∥BO.
∵EF 平面BDD1B1,
BO 平面BDD1B1,
∴EF∥平面BDD1B1.
11.证明 连结AF延长交BC于G,
连结PG.
在 ABCD中,
易证△BFG∽△DFA.
∴==,
∴EF∥PG.
而EF 平面PBC,
PG 平面PBC,
∴EF∥平面PBC.
12.①③
13.证明 方法一 如图(1)所示,作PM∥AB交BE于M,作QN∥AB交BC于N,连结MN.
∵正方形ABCD和正方形ABEF有公共边AB,
∴AE=BD.
又∵AP=DQ,∴PE=QB.
又∵PM∥AB∥QN,
∴=,=.
∴PM綊QN.
∴四边形PQNM是平行四边形.∴PQ∥MN.
又MN 平面BCE,PQ 平面BCE,
∴PQ∥平面BCE.
方法二 如图(2)所示,连结AQ并延长交BC(或其延长线)于K,连结EK.
∵KB∥AD,∴=.∵AP=DQ,AE=BD,
∴BQ=PE.
∴=.∴=.∴PQ∥EK.
又PQ 面BCE,EK 面BCE,∴PQ∥面BCE.
第2课时 直线与平面平行的性质
【课时目标】 1.能应用文字语言、符号语言、图形语言准确地描述直线与平面平行的性质定理.2.能运用直线与平面平行的性质定理,证明一些空间线面平行关系的简单问题.
直线与平面平行的性质定理:
经过一条直线和一个平面________,经过这条直线的平面和这个平面__________,那么这条直线就和交线________.
(1)符号语言描述:______________.
(2)性质定理的作用:
可以作为________________平行的判定方法,也提供了一种作__________的方法.
一、填空题
1.已知直线l∥平面α,直线m α,则直线l和m的位置关系是________.
2.若不在同一条直线上的三点A、B、C到平面α的距离相等,且A、B、CD/∈α,则面ABC与面α的位置关系为____________.
3.若直线m不平行于平面α,且m α,则下列结论成立的是________(填序号).
①α内的所有直线与m异面;
②α内不存在与m平行的直线;
③α内存在唯一的直线与m平行;
④α内的直线与m都相交.
4.如图所示,长方体ABCD-A1B1C1D1中,E、F分别是棱AA1和BB1的中点,过EF的平面EFGH分别交BC和AD于G、H,则HG与AB的位置关系是________.
5.直线a∥平面α,α内有n条直线交于一点,则这n条直线中与直线a平行的直线条数为________.
6.如图所示,平面α∩β=l1,α∩γ=l2,β∩γ=l3,l1∥l2,下列说法正确的是__________(填序号).
①l1平行于l3,且l2平行于l3;
②l1平行于l3,且l2不平行于l3;
③l1不平行于l3,且l2不平行于l3;
④l1不平行于l3,但l2平行于l3.
7.设m、n是平面α外的两条直线,给出三个论断:
①m∥n;②m∥α;③n∥α.以其中的两个为条件,余下的一个为结论,构造三个命题,写出你认为正确的一个命题:______________.(用序号表示)
8.如图所示,ABCD—A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1,B1C1的中点,P是上底面的棱AD上的一点,AP=,过P,M,N的平面交上底面于PQ,Q在CD上,则PQ=________.
9.如图所示,在空间四边形ABCD中,E、F、G、H分别是四边上的点,它们共面,并且AC∥平面EFGH,BD∥平面EFGH,AC=m,BD=n,当四边形EFGH是菱形时,AE∶EB=________.
二、解答题
10.ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:AP∥GH.
11.如图所示,三棱锥A—BCD被一平面所截,截面为平行四边形EFGH.
求证:CD∥平面EFGH.
能力提升
12.如图所示,在透明塑料制成的长方体ABCD—A1B1C1D1容器中灌进一些水,将固定容器底面一边BC置于地面上,再将容器倾斜,随着倾斜程度的不同,有以下命题:①水的形状成棱柱形;②水面EFGH的面积不变;③A1D1始终水面EFGH平行.其中正确的命题序号是________.
13.如图所示,P为平行四边形ABCD所在平面外一点,M、N分别为AB、PC的中点,平面PAD∩平面PBC=l.
(1)求证:BC∥l;
(2)MN与平面PAD是否平行?试证明你的结论.
直线与平面平行判定定理和直线与平面平行性质定理经常交替使用,也就是通过线线平行推出线面平行,再通过线面平行推出新的线线平行,复杂的题目还可继续推下去.可有如下示意图:

第2课时 直线与平面平行的性质 答案
知识梳理
平行 相交 平行  a∥b
直线和直线 平行线
作业设计
1.平行或异面 2.平行或相交 3.②
4.平行
解析 ∵E、F分别是AA1、BB1的中点,∴EF∥AB.
又AB 平面EFGH,EF 平面EFGH,
∴AB∥平面EFGH.
又AB 平面ABCD,
平面ABCD∩平面EFGH=GH,
∴AB∥GH.
5.0或1
解析 设这n条直线的交点为P,则点P不在直线a上,那么直线a和点P确定一个平面β,则点P既在平面α内又在平面β内,则平面α与平面β相交,设交线为直线b,则直线b过点P.又直线a∥平面α,则a∥b.很明显这样作出的直线b有且只有一条,那么直线b可能在这n条直线中,也可能不在,即这n条直线中与直线a平行的直线至多有一条.
6.①
解析 ∵l1∥l2,l2 γ,l1 γ,
∴l1∥γ.
又l1 β,β∩γ=l3,
∴l1∥l3
∴l1∥l3∥l2.
7.①② ③(或①③ ②)
解析 设过m的平面β与α交于l.
∵m∥α,∴m∥l,∵m∥n,∴n∥l,
∵n α,l α,∴n∥α.
8.a
解析 ∵MN∥平面AC,平面PMN∩平面AC=PQ,
∴MN∥PQ,易知DP=DQ=,
故PQ==DP=.
9.m∶n
解析 ∵AC∥平面EFGH,∴EF∥AC,GH∥AC,
∴EF=HG=m·,同理EH=FG=n·.
∵EFGH是菱形,∴m·=n·,
∴AE∶EB=m∶n.
10.证明 如图所示,连结AC交BD于O,连结MO,
∵ABCD是平行四边形,
∴O是AC中点,
又M是PC的中点,
∴AP∥OM.
根据直线和平面平行的判定定理,
则有PA∥平面BMD.
∵平面PAHG∩平面BMD=GH,
根据直线和平面平行的性质定理,
∴PA∥GH.
11.证明 ∵四边形EFGH为平行四边形,
∴EF∥GH.
又GH 平面BCD,EF 平面BCD.
∴EF∥平面BCD.
而平面ACD∩平面BCD=CD,EF 平面ACD,
∴EF∥CD.
而EF 平面EFGH,CD 平面EFGH,
∴CD∥平面EFGH.
12.①③
13.(1)证明 因为BC∥AD,AD 平面PAD,
BC 平面PAD,所以BC∥平面PAD.
又平面PAD∩平面PBC=l,BC 平面PBC,
所以BC∥l.
(2)解 MN∥平面PAD.
证明如下:
如图所示,取DC的中点Q.
连结MQ、NQ.
因为N为PC中点,
所以NQ∥PD.
因为PD 平面PAD,NQ 平面PAD,所以NQ∥平面PAD.同理MQ∥平面PAD.
又NQ 平面MNQ,MQ 平面MNQ,
NQ∩MQ=Q,所以平面MNQ∥平面PAD.
所以MN∥平面PAD.
第3课时 直线与平面垂直的判定
【课时目标】 1.理解直线与平面垂直的定义.2.掌握直线与平面垂直的判定定理并能灵活应用.
1.如果直线a与平面α内的__________________,我们就说直线a与平面α互相垂直,记作:________.
图形如图所示.
2.从平面外一点引平面的垂线,这个点和________间的距离,叫做这个点到这个平面的距离.
3.直线与平面垂直的判定定理:如果一条直线和一个平面内的两条________直线垂直,那么这条直线______于这个平面.
图形表示:
用符号表示为:______________________________________________________________.
一、选择题
1.下列命题中正确的是________(填序号).
①如果直线l与平面α内的无数条直线垂直,则l⊥α;
②如果直线l与平面α内的一条直线垂直,则l⊥α;
③如果直线l不垂直于α,则α内没有与l垂直的直线;
④如果直线l不垂直于α,则α内也可以有无数条直线与l垂直.
2.直线a⊥直线b,b⊥平面β,则a与β的关系是________.
3.若a、b、c表示直线,α表示平面,下列条件中能使a⊥α为________.(填序号)
①a⊥b,b⊥c,b α,c α;②a⊥b,b∥α;
③a∩b=A,b α,a⊥b;④a∥b,b⊥α.
4.如图所示,定点A和B都在平面α内,定点P α,PB⊥α,C是平面α内异于A和B的动点,且PC⊥AC,则△ABC的形状为__________三角形.
5.如图①所示,在正方形SG1G2G3中,E、F分别是边G1G2、G2G3的中点,D是EF的中点,现沿SE、SF及EF把这个正方形折成一个几何体(如图②使G1、G2、G3三点重合于一点G),则下列结论中成立的有________(填序号).
①SG⊥面EFG;②SD⊥面EFG;③GF⊥面SEF;
④GD⊥面SEF.
6.△ABC的三条边长分别是5、12、13,点P到三点的距离都等于7,那么P到平面ABC的距离为__________________________________________________________________.
7.如图所示,PA⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数为________.
8.在直三棱柱ABC—A1B1C1中,BC=CC1,当底面A1B1C1满足条件______时,有AB1⊥BC1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况).
9.如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是棱AA1和AB上的点,若∠B1MN是直角,则∠C1MN=________.
二、解答题
10.如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱B1C1、B1B的中点.求证:CF⊥平面EAB.
11.如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB,PC的中点,PA=AD.
求证:(1)CD⊥PD;
(2)EF⊥平面PCD.
能力提升
12.如图所示,在正方体ABCD-A1B1C1D1中,P为DD1的中点,O为ABCD的中心,求证B1O⊥平面PAC.
13.如图所示,△ABC中,∠ABC=90°,SA⊥平面ABC,过点A向SC和SB引垂线,垂足分别是P、Q,求证:(1)AQ⊥平面SBC;
(2)PQ⊥SC.
1.直线和平面垂直的判定方法
(1)利用线面垂直的定义.
(2)利用线面垂直的判定定理.
(3)利用下面两个结论:①若a∥b,a⊥α,则b⊥α;②若α∥β,a⊥α,则a⊥β.
2.在线面垂直的问题中,通过直线与直线垂直,可以证明直线与平面垂直;直线与平面垂直后,直线和平面内的任何直线都垂直.这样,就形成了线线垂直与线面垂直连环使用的思维形式,它对解题方法、策略乃至人们的思维,无疑都是一种提示.
第3课时 直线与平面垂直的判定 答案
知识梳理
1.任意一条直线都垂直 a⊥α 2.垂足
3.相交 垂直 m,n α,m∩n=O,l⊥m,l⊥n l⊥α
作业设计
1.④ 2.a β或a∥β 3.④
4.直角
解析 易证AC⊥面PBC,所以AC⊥BC.
5.①
6.
解析 由P到三个顶点距离相等.可知,P为△ABC的外心,又△ABC为直角三角形,∴P到平面ABC的距离为h=PD==.
7.4
解析 
BC⊥平面PAC BC⊥PC,
∴直角三角形有△PAB、△PAC、△ABC、△PBC.
8.∠A1C1B1=90°
解析 
如图所示,连结B1C,
由BC=CC1,可得BC1⊥B1C,
因此,要证AB1⊥BC1,则只要证明BC1⊥平面AB1C,
即只要证AC⊥BC1即可,由直三棱柱可知,只要证AC⊥BC即可.
因为A1C1∥AC,B1C1∥BC,
故只要证A1C1⊥B1C1即可.
(或者能推出A1C1⊥B1C1的条件,如∠A1C1B1=90°等)
9.90°
解析 ∵B1C1⊥面ABB1A1,
∴B1C1⊥MN.
又∵MN⊥B1M,
∴MN⊥面C1B1M,
∴MN⊥C1M.
∴∠C1MN=90°.
10.证明 在平面B1BCC1中,
∵E、F分别是B1C1、B1B的中点,
∴△BB1E≌△CBF,
∴∠B1BE=∠BCF,
∴∠BCF+∠EBC=90°,∴CF⊥BE,
又AB⊥平面B1BCC1,CF 平面B1BCC1,
∴AB⊥CF,AB∩BE=B,∴CF⊥平面EAB.
11.证明 (1)∵PA⊥底面ABCD,
∴CD⊥PA.
又矩形ABCD中,CD⊥AD,且AD∩PA=A,
∴CD⊥平面PAD,
∴CD⊥PD.
(2)取PD的中点G,连结AG,FG.又∵G、F分别是PD,PC的中点,
∴GF綊CD,∴GF綊AE,
∴四边形AEFG是平行四边形,∴AG∥EF.
∵PA=AD,G是PD的中点,
∴AG⊥PD,∴EF⊥PD,
∵CD⊥平面PAD,AG 平面PAD.
∴CD⊥AG.∴EF⊥CD.
∵PD∩CD=D,∴EF⊥平面PCD.
12.证明 连结AB1,CB1,设AB=1.
∴AB1=CB1=,
∵AO=CO,∴B1O⊥AC.
连结PB1.
∵OB=OB2+BB=,
PB=PD+B1D=,
OP2=PD2+DO2=,
∴OB+OP2=PB.
∴B1O⊥PO,
又∵PO∩AC=O,
∴B1O⊥平面PAC.
13.证明 (1)∵SA⊥平面ABC,BC 平面ABC,
∴SA⊥BC.
又∵BC⊥AB,SA∩AB=A,
∴BC⊥平面SAB.
又∵AQ 平面SAB,
∴BC⊥AQ.又∵AQ⊥SB,BC∩SB=B,
∴AQ⊥平面SBC.
(2)∵AQ⊥平面SBC,SC 平面SBC,
∴AQ⊥SC.
又∵AP⊥SC,AQ∩AP=A,
∴SC⊥平面APQ.
∵PQ 平面APQ,∴PQ⊥SC.
第4课时 直线与平面垂直的性质
【课时目标】 1.掌握直线与平面垂直的性质定理.2.会求直线与平面所成的角.
1.直线与平面垂直的性质定理:如果两条直线垂直于同一个平面,那么这两条直线________.
该定理用图形表示为:
用符号表示为:________________________.
2.直线和平面的距离:一条直线和一个平面________,这条直线上______________到这个平面的距离,叫做这条直线和这个平面的距离.
3.平面的一条斜线与它在这个平面内的射影所成的锐角,叫做这条直线与这个平面______________.
规定:若直线与平面垂直,则直线与平面所成的角是________.
若直线与平面平行或直线在平面内,则直线与平面所成的角是________的角.
一、填空题
1.与两条异面直线同时垂直的平面有________个.
2.若m、n表示直线,α表示平面,则下列命题中,正确命题的个数为________.
① n⊥α;  ② m∥n;
③ m⊥n;  ④ n⊥α.
3.已知直线PG⊥平面α于G,直线EF α,且PF⊥EF于F,那么线段PE,PF,PG的大小关系是______________.
4.PA垂直于以AB为直径的圆所在平面,C为圆上异于A,B的任一点,则下列关系正确的是________(填序号).
①PA⊥BC;
②BC⊥平面PAC;
③AC⊥PB;
④PC⊥BC.
5.P为△ABC所在平面外一点,O为P在平面ABC内的射影.
(1)若P到△ABC三边距离相等,且O在△ABC的内部,则O是△ABC的________心;
(2)若PA⊥BC,PB⊥AC,则O是△ABC的______心;
(3)若PA,PB,PC与底面所成的角相等,则O是△ABC的________心.
6.线段AB在平面α的同侧,A、B到α的距离分别为3和5,则AB的中点到α的距离为________.
7.直线a和b在正方体ABCD-A1B1C1D1的两个不同平面内,使a∥b成立的条件是________.(只填序号)
①a和b垂直于正方体的同一个面;②a和b在正方体两个相对的面内,且共面;③a和b平行于同一条棱;④a和b在正方体的两个面内,且与正方体的同一条棱垂直.
8.在正方体ABCD-A1B1C1D1中,
(1)直线A1B与平面ABCD所成的角是________;
(2)直线A1B与平面ABC1D1所成的角是________;
(3)直线A1B与平面AB1C1D所成的角是________.
9.如图,在正三棱柱ABC—A1B1C1中,侧棱长为,底面三角形的边长为1,则BC1与侧面ACC1A1所成的角是________.(正三棱柱:侧棱与底面垂直,底面为正三角形的棱柱)
二、解答题
10.如图所示,在正方体ABCD—A1B1C1D1中,M是AB上一点,N是A1C的中点,MN⊥平面A1DC.
求证:(1)MN∥AD1;
(2)M是AB的中点.
11.如图所示,设三角形ABC的三个顶点在平面α的同侧,AA′⊥α于A′,BB′⊥α于B′,CC′⊥α于C′,G、G′分别是△ABC和△A′B′C′的重心,求证:GG′⊥α.
能力提升
12.如图,△ABC为正三角形,EC⊥平面ABC,DB⊥平面ABC,CE=CA=2BD,M是EA的中点,N是EC的中点,
求证:平面DMN∥平面ABC.
13.如图所示,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M,N分别是A1B,B1C1的中点.
(1)求证:MN⊥平面A1BC;
(2)求直线BC1和平面A1BC所成的角的大小.
1.直线和平面垂直的性质定理可以作为两条直线平行的判定定理,可以并入平行推导链中,实现平行与垂直的相互转化,即线线垂直 线面垂直 线线平行 线面平行.
2.求线面角,确定直线在平面内的射影的位置,是解题的关键.因为只有确定了射影的位置,才能找到直线与平面所成的角,才能将空间的问题转化为平面的问题来解.
第4课时 直线与平面垂直的性质 答案
知识梳理
1.平行 a⊥α,b⊥α a∥b
2.平行 任意一点
3.所成的角 直角 0°
作业设计
1.0
2.3
解析 ①②③正确,④中n与面α可能有:n α或n∥α或相交(包括n⊥α).
3.PE>PF>PG
解析 由于PG⊥平面α于G,PF⊥EF,
∴PG最短,PFPF>PG.
4.①②④
解析 PA⊥平面ABC,得PA⊥BC,①正确;
又BC⊥AC,∴BC⊥面PAC,
∴BC⊥PC,②、④均正确.
5.(1)内 (2)垂 (3)外
6.4
解析 由直线与平面垂直的性质定理知AB中点到α距离为以3和5为上、下底的直角梯形的中位线的长.
7.①②③
解析 ①为直线与平面垂直的性质定理的应用,②为面面平行的性质,③为公理4的应用.
8.(1)45° (2)30° (3)90°
解析 
(1)由线面角定义知∠A1BA为A1B与平面ABCD所成的角,∠A1BA=45°.
(2)连结A1D、AD1,交点为O,
则易证A1D⊥面ABC1D1,所以A1B在面ABC1D1内的射影为OB,
∴A1B与面ABC1D1所成的角为∠A1BO,
∵A1O=A1B,∴∠A1BO=30°.
(3)∵A1B⊥AB1,A1B⊥B1C1,∴A1B⊥面AB1C1D,即A1B与面AB1C1D所成的角为90°.
9.30°
解析 取AC的中点E,连结C1E,BE,则∠BC1E即为所求的角.又由BC1=,
BE=,
所以sin∠BC1E=,∠BC1E=30°.
10.证明 (1)∵ADD1A1为正方形,
∴AD1⊥A1D.
又∵CD⊥平面ADD1A1,∴CD⊥AD1.
∵A1D∩CD=D,∴AD1⊥平面A1DC.
又∵MN⊥平面A1DC,
∴MN∥AD1.
(2)连结ON,在△A1DC中,
A1O=OD,A1N=NC.
∴ON綊CD綊AB,
∴ON∥AM.
又∵MN∥OA,
∴四边形AMNO为平行四边形,∴ON=AM.
∵ON=AB,∴AM=AB,∴M是AB的中点.
11.证明 
连结AG并延长交BC于D,连结A′G′并延长交B′C′于D′,连结DD′,由AA′⊥α,BB′⊥α,CC′⊥α,得AA′∥BB′∥CC′.
∵D、D′分别为BC和B′C′的中点,
∴DD′∥CC′∥BB′,∴DD′∥AA′,
∵G、G′分别是△ABC和△A′B′C′的重心,
∴=,∴GG′∥AA′,
又∵AA′⊥α,∴GG′⊥α.
12.证明 ∵M、N分别是EA与EC的中点,
∴MN∥AC,
又∵AC 平面ABC,MN 平面ABC,
∴MN∥平面ABC,
∵DB⊥平面ABC,EC⊥平面ABC,
∴BD∥EC,四边形BDEC为直角梯形,
∵N为EC中点,EC=2BD,
∴NC綊BD,∴四边形BCND为矩形,
∴DN∥BC,
又∵DN 平面ABC,BC 平面ABC,
∴DN∥平面ABC,
又∵MN∩DN=N,
∴平面DMN∥平面ABC.
13.
(1)证明 如图所示,由已知BC⊥AC,BC⊥CC1,
得BC⊥平面ACC1A1.
连结AC1,则BC⊥AC1.
由已知,可知侧面ACC1A1是正方形,所以A1C⊥AC1.
又BC∩A1C=C,
所以AC1⊥平面A1BC.
因为侧面ABB1A1是正方形,M是A1B的中点,连结AB1,则点M是AB1的中点.
又点N是B1C1的中点,则MN是△AB1C1的中位线,所以MN∥AC1.故MN⊥平面A1BC.
(2)解 如图所示,因为AC1⊥平面A1BC,设AC1与A1C相交于点D,连结BD,
则∠C1BD为直线BC1和平面A1BC所成的角.
设AC=BC=CC1=a,则C1D=a,BC1=a.
在Rt△BDC1中,sin ∠C1BD==,
所以∠C1BD=30°,
故直线BC1和平面A1BC所成的角为30°.1.2.4 平面与平面的位置关系
第1课时 两平面平行的判定及性质
【课时目标】 1.理解并掌握两个平面平行、两个平面相交的定义.2.掌握两个平面平行的判定和性质定理,并能运用其解决一些具体问题.
1.平面与平面平行的判定定理
如果一个平面内有________________都平行于另一个平面,那么这两个平面平行.用符号表示为________________________.
2.平面与平面平行的性质定理:
如果两个平行平面同时和第三个平面相交,________________________.
符号表示为:________________ a∥b.
3.面面平行的其他性质:
(1)两平面平行,其中一个平面内的任一直线平行于________________,即
________,可用来证明线面平行;
(2)夹在两个平行平面间的平行线段________;
(3)平行于同一平面的两个平面________.
一、填空题
1.平面α∥平面β,a α,b β,则直线a、b的位置关系是__________.
2.下列各命题中假命题有________个.
①平行于同一直线的两个平面平行;
②平行于同一平面的两个平面平行;
③一条直线与两个平行平面中的一个相交,那么这条直线必和另一个相交;
④若平面α内两条直线与平面β内两条直线分别平行,则α∥β.
3.过正方体ABCD-A1B1C1D1的三个顶点A1、C1、B的平面与底面ABCD所在平面的交线为l,则l与A1C1的位置关系是________.
4.α和β是两个不重合的平面,在下列条件中,可判定α∥β的是________.(填序号)
①α内有无数条直线平行于β;
②α内不共线三点到β的距离相等;
③l、m是平面α内的直线,且l∥α,m∥β;
④l、m是异面直线且l∥α,m∥α,l∥α,m∥β.
5.已知α∥β且α与β间的距离为d,直线a与α相交于点A、与β相交于B,若AB=d,则直线a与α所成的角等于________.
6.如图所示,P是三角形ABC所在平面外一点,平面α∥平面ABC,α分别交线段PA、PB、PC于A′、B′、C′,若PA′∶AA′=2∶3,则S△A′B′C′∶S△ABC=________.
7.α,β,γ为三个不重合的平面,a,b,c为三条不同的直线,则有下列命题,不正确的是________(填序号).
① a∥b;    ② a∥b;
③ α∥β; ④ α∥β;
⑤ α∥a; ⑥ a∥α.
8.已知平面α∥平面β,P是α,β外一点,过点P的直线m与α,β分别交于点A,C,过点P的直线n与α,β分别交于点B,D,且PA=6,AC=9,PD=8,则BD的长为________.
9.如图所示,在正方体ABCD—A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足________时,有MN∥平面B1BDD1.
二、解答题
10.如图所示,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、DC和SC的中点.求证:平面EFG∥平面BDD1B1.
11.如图,在三棱柱ABC-A1B1C1中,M是A1C1的中点,平面AB1M∥平面BC1N,AC∩平面BC1N=N.
求证:N为AC的中点.
能力提升
12.如图所示,已知正方体ABCD-A1B1C1D1中,面对角线AB1,BC1上分别有两点E、F,且B1E=C1F.求证:EF∥平面ABCD.
13.如图所示,B为△ACD所在平面外一点,M,N,G分别为△ABC,△ABD,△BCD的重心.
(1)求证平面MNG∥平面ACD;
(2)求S△MNG∶S△ADC.
1.判定平面与平面平行的常用方法有:(1)利用定义,证明两个平面没有公共点,常用反证法.(2)利用判定定理.(3)利用平行平面的传递性,即α∥β,β∥γ,则α∥γ.
2.平面与平面平行主要有以下性质:(1)面面平行的性质定理.(2)两个平面平行,其中一个平面内的任一直线平行于另一个平面.(3)夹在两个平行平面之间的平行线段相等.
1.2.4 平面与平面的位置关系
第1课时 两平面平行的判定及性质
答案
知识梳理
1.两条相交直线
a α,b α,a∩b=A,a∥β,b∥β α∥β
2.那么所得的两条交线平行 
3.(1)另一个平面 a∥β (2)相等 (3)平行
作业设计
1.平行或异面 2.2
3.平行
解析 由面面平行的性质可知第三平面与两平行平面的交线是平行的.
4.④ 5.60°
6.4∶25
解析 面α∥面ABC,面PAB与它们的交线分别为A′B′,AB,∴AB∥A′B′,同理B′C′∥BC,
易得△ABC∽△A′B′C′,
S△A′B′C′∶S△ABC=()2=()2=.
7.②③⑤⑥
解析 由公理4及平行平面的传递性知①④正确.举反例知②③⑤⑥不正确.②中a,b可以相交,还可以异面;③中α,β可以相交;⑤中a可以在α内;⑥中a可以在α内.
8.24或
解析 当P点在平面α和平面β之间时,由三角形相似可求得BD=24,当平面α和平面β在点P同侧时可求得BD=.
9.M∈线段FH
解析 ∵HN∥BD,HF∥DD1,
HN∩HF=H,BD∩DD1=D,
∴平面NHF∥平面B1BDD1,
故线段FH上任意点M与N连结,
有MN∥平面B1BDD1.
10.
证明 如图所示,连结SB,SD,
∵F、G分别是DC、SC的中点,
∴FG∥SD.
又∵SD 平面BDD1B1,FG 平面BDD1B1,
∴直线FG∥平面BDD1B1.
同理可证EG∥平面BDD1B1,
又∵EG 平面EFG,
FG 平面EFG,
EG∩FG=G,
∴平面EFG∥平面BDD1B1.
11.证明 ∵平面AB1M∥平面BC1N,
平面ACC1A1∩平面AB1M=AM,
平面BC1N∩平面ACC1A1=C1N,
∴C1N∥AM,又AC∥A1C1,
∴四边形ANC1M为平行四边形,
∴AN綊C1M=A1C1=AC,
∴N为AC的中点.
12.证明 方法一 过E、F分别作AB、BC的垂线,EM、FN分别交AB、BC于M、N,连结MN.
∵BB1⊥平面ABCD,
∴BB1⊥AB,BB1⊥BC,
∴EM∥BB1,FN∥BB1,
∴EM∥FN,
∵AB1=BC1,B1E=C1F,
∴AE=BF,
又∠B1AB=∠C1BC=45°,
∴Rt△AME≌Rt△BNF,
∴EM=FN.
∴四边形MNFE是平行四边形,
∴EF∥MN.
又MN 平面ABCD,EF 平面ABCD,
∴EF∥平面ABCD.
方法二 
过E作EG∥AB交BB1于G,连结GF,
∴=,B1E=C1F,B1A=C1B,∴=,
∴FG∥B1C1∥BC.
又∵EG∩FG=G,AB∩BC=B,
∴平面EFG∥平面ABCD.
又EF 平面EFG,∴EF∥平面ABCD.
13.(1)证明 (1)连结BM,BN,BG并延长分别交AC,AD,CD于P,F,H.
∵M,N,G分别为△ABC,△ABD,△BCD的重心,
则有===2,
且P,H,F分别为AC,CD,AD的中点.
连结PF,FH,PH,有MN∥PF.
又PF 平面ACD,MN 平面ACD,
∴MN∥平面ACD.
同理MG∥平面ACD,MG∩MN=M,
∴平面MNG∥平面ACD.
(2)解 由(1)可知==,
∴MG=PH.
又PH=AD,∴MG=AD.
同理NG=AC,MN=CD.
∴△MNG∽△ACD,其相似比为1∶3.
∴S△MNG∶S△ACD=1∶9.
第2课时 两平面垂直的判定
【课时目标】 1.掌握二面角、二面角的平面角的概念,会求简单的二面角的大小.2.掌握两个平面互相垂直的概念,并能利用判定定理判定两个平面垂直.
1.二面角:一条直线和由这条直线出发的____________所组成的图形叫做二面角.______________叫做二面角的棱.________________叫做二面角的面.二面角α的范围为________________.
2.平面与平面的垂直
①定义:如果两个平面所成的二面角是__________,就说这两个平面互相垂直.
②面面垂直的判定定理
文字语言:如果一个平面经过另一个平面的一条______,那么这两个平面互相垂直.符号表示: α⊥β.
一、填空题
1.下列命题:
①两个相交平面组成的图形叫做二面角;
②异面直线a、b分别和一个二面角的两个面垂直,则a、b组成的角与这个二面角的平面角相等或互补;
③二面角的平面角是从棱上一点出发,分别在两个面内作射线所成角的最小角;
④二面角的大小与其平面角的顶点在棱上的位置没有关系.
其中正确的是________(填序号).
2.若平面α与平面β不垂直,那么平面α内能与平面β垂直的直线有________条.
3.设有直线m、n和平面α、β,则下列结论中正确的是________(填序号).
①若m∥n,n⊥β,m α,则α⊥β;
②若m⊥n,α∩β=m,n α,则α⊥β;
③若m⊥α,n⊥β,m⊥n,则α⊥β.
4.过两点与一个已知平面垂直的平面有________个.
5.在边长为1的菱形ABCD中,∠ABC=60°,把菱形沿对角线AC折起,使折起后BD=,则二面角B-AC-D的大小为________.
6.在正四面体P-ABC中,D、E、F分别是AB、BC、CA的中点,下面四个结论中成立的是________(填序号).
①BC∥面PDF; ②DF⊥面PAE;
③面PDF⊥面ABC; ④面PAE⊥面ABC.
7.过正方形ABCD的顶点A作线段AP⊥平面ABCD,且AP=AB,则平面ABP与平面CDP所成的二面角的度数是________.
8.如图所示,已知PA⊥矩形ABCD所在的平面,图中互相垂直的平面有________对.
9.已知α、β是两个不同的平面,m、n是平面α及β之外的两条不同直线,给出四个论断:
①m⊥n;②α⊥β;③n⊥β;④m⊥α.
以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:____________.
二、解答题
10.如图所示,在空间四边形ABCD中,AB=BC,CD=DA,E、F、G分别为CD、DA和对角线AC的中点.
求证:平面BEF⊥平面BGD.
11.如图所示,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=.
(1)证明:平面PBE⊥平面PAB;
(2)求二面角A—BE—P的大小.
能力提升
12.如图,在直三棱柱ABC—A1B1C1中,E、F分别是A1B、A1C的中点,点D在B1C1上,A1D⊥B1C.
求证:(1)EF∥平面ABC;
(2)平面A1FD⊥平面BB1C1C.
13.如图,在三棱锥P—ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.
(1)求证:BC⊥ 平面PAC.
(2)是否存在点E使得二面角A—DE—P为直二面角?并说明理由.
1.证明两个平面垂直的主要途径
(1)利用面面垂直的定义,即如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.
(2)面面垂直的判定定理,即如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.
2.利用面面垂直的判定定理证明面面垂直时的一般方法:先从现有的直线中寻找平面的垂线,若图中存在这样的直线,则可通过线面垂直来证明面面垂直;若图中不存在这样的直线,则可通过作辅助线来解决,而作辅助线则应有理论依据并有利于证明,不能随意添加.
3.证明两个平面垂直,通常是通过证明线线垂直→线面垂直→面面垂直来实现的,因此,在关于垂直问题的论证中要注意线线垂直、线面垂直、面面垂直的相互转化.每一垂直的判定都是从某一垂直开始转向另一垂直,最终达到目的的.
第2课时 两平面垂直的判定 答案
知识梳理
1.两个半平面 这条直线 每个半平面 0°≤α≤180°
2.①直二面角 ②垂线 l β
作业设计
1.②④
解析 ①不符合二面角定义,③从运动的角度演示可知,二面角的平面角不是最小角.
2.0
解析 若存在1条,则α⊥β,与已知矛盾.
3.①③
解析 ②错,当两平面不垂直时,在一个平面内可以找到无数条直线与两个平面的交线垂直.
4.1或无数
解析 当两点连线与平面垂直时,有无数个平面与已知平面垂直,当两点连线与平面不垂直时,有且只有一个平面与已知平面垂直.
5.60°
解析 
如图所示,由二面角的定义知∠BOD即为二面角的平面角.
∵DO=OB=BD=,
∴∠BOD=60°.
6.①②④
解析 
如图所示,∵BC∥DF,
∴BC∥平面PDF.
∴①正确.
由BC⊥PE,BC⊥AE,
∴BC⊥平面PAE.
∴DF⊥平面PAE.
∴②正确.
∴平面ABC⊥平面PAE(BC⊥平面PAE).
∴④正确.
7.45°
解析 可将图形补成以AB、AP为棱的正方体,不难求出二面角的大小为45°.
8.5
解析 由PA⊥面ABCD知面PAD⊥面ABCD,面PAB⊥面ABCD,
又PA⊥AD,PA⊥AB且AD⊥AB,
∴∠DAB为二面角D—PA—B的平面角,
∴面DPA⊥面PAB.又BC⊥面PAB,
∴面PBC⊥面PAB,同理DC⊥面PDA,
∴面PDC⊥面PDA.
9.①③④ ②(或②③④ ①)
10.证明 ∵AB=BC,CD=AD,G是AC的中点,
∴BG⊥AC,DG⊥AC,
∴AC⊥平面BGD.
又EF∥AC,∴EF⊥平面BGD.
∵EF 平面BEF,∴平面BEF⊥平面BGD.
11.(1)证明 如图所示,连结BD,由ABCD是菱形且∠BCD=60°知,△BCD是等边三角形.
因为E是CD的中点,所以BE⊥CD.
又AB∥CD,所以BE⊥AB.
又因为PA⊥平面ABCD,
BE 平面ABCD,
所以PA⊥BE.而PA∩AB=A,
因此BE⊥平面PAB.
又BE 平面PBE,
所以平面PBE⊥平面PAB.
(2)解 由(1)知,BE⊥平面PAB,PB 平面PAB,
所以PB⊥BE.又AB⊥BE,
所以∠PBA是二面角A—BE—P的平面角.
在Rt△PAB中,tan∠PBA==,
则∠PBA=60°.
故二面角A—BE—P的大小是60°.
12.证明 (1)由E、F分别是A1B、A1C的中点知
EF∥BC.
因为EF 平面ABC.
BC 平面ABC.
所以EF∥平面ABC.
(2)由三棱柱ABC—A1B1C1为直三棱柱知
CC1⊥平面A1B1C1.
又A1D 平面A1B1C1,故CC1⊥A1D.
又因为A1D⊥B1C,CC1∩B1C=C,故A1D⊥平面BB1C1C,又A1D 平面A1FD,
所以平面A1FD⊥平面BB1C1C.
13.(1)证明 ∵PA⊥底面ABC,
∴PA⊥BC.
又∠BCA=90°,
∴AC⊥BC.又∵AC∩PA=A,
∴BC⊥平面PAC.
(2)解 ∵DE∥BC,又由(1)知,
BC⊥平面PAC,
∴DE⊥平面PAC.
又∵AE 平面PAC,PE 平面PAC,
∴DE⊥AE,DE⊥PE.
∴∠AEP为二面角A—DE—P的平面角.
∵PA⊥底面ABC,
∴PA⊥AC,∴∠PAC=90°.
∴在棱PC上存在一点E,
使得AE⊥PC.
这时∠AEP=90°,
故存在点E,使得二面角A—DE—P为直二面角.
第3课时 两平面垂直的性质
【课时目标】 1.理解平面与平面垂直的性质定理.2.能应用面面垂直的性质定理证明空间中线、面的垂直关系.
3.理解线线垂直、线面垂直、面面垂直的内在联系.
1.平面与平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内________于它们________的直线垂直于另一个平面.
用符号表示为:α⊥β,α∩β=l,a α,a⊥l ________.
2.两个重要结论:
(1)如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线在________________________________________________________________________.
图形表示为:
符号表示为:α⊥β,A∈α,A∈a,a⊥β ________.
(2)已知平面α⊥平面β,a α,a⊥β,那么__________(a与α的位置关系).
一、填空题
1.平面α⊥平面β,a α,b β,且b∥α,a⊥b,则a和β的位置关系是________.
2.已知三条不重合的直线m、n、l,两个不重合的平面α,β,有下列命题:
①若m∥n,n α,则m∥α;
②若l⊥α,m⊥β且l∥m,则α∥β;
③若m α,n α,m∥β,n∥β,则α∥β;
④若α⊥β,α∩β=m,n β,n⊥m,则n⊥α.
其中正确的命题是________(填序号).
3.若平面α与平面β不垂直,那么平面α内能与平面β垂直的直线有________条.
4.设α-l-β是直二面角,直线a α,直线b β,a,b与l都不垂直,那么下列说法正确的序号为________.
①a与b可能垂直,但不可能平行;
②a与b可能垂直,也可能平行;
③a与b不可能垂直,但可能平行;
④a与b不可能垂直,也不可能平行.
5.如图,两个正方形ABCD和ADEF所在平面互相垂直,设M、N分别是BD和AE的中点,那么①AD⊥MN;②MN∥平面CDE;③MN∥CE;④MN、CE异面.
其中结论正确的是________(填序号).
6.
如图所示,平面α⊥平面β,A∈α,B∈β,AB与两平面α、β所成的角分别为和.过A、B分别作两平面交线的垂线,垂足分别为A′、B′,则AB∶A′B′=________.
7.若α⊥β,α∩β=l,点P∈α,PD/∈l,则下列命题中正确的为________.(只填序号)
①过P垂直于l的平面垂直于β;
②过P垂直于l的直线垂直于β;
③过P垂直于α的直线平行于β;
④过P垂直于β的直线在α内.
8.α、β、γ是两两垂直的三个平面,它们交于点O,空间一点P到α、β、γ的距离分别是2 cm、3 cm、6 cm,则点P到O的距离为________ cm.
9.在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则点C1在底面ABC上的射影H必在________.
二、解答题
10.如图,在三棱锥P-ABC中,PA⊥平面ABC,平面PAB⊥平面PBC.
求证:BC⊥AB.
11.如图所示,P是四边形ABCD所在平面外的一点,四边形ABCD是∠DAB=60°且边长为a的菱形.侧面PAD为正三角形,其所在平面垂直于底面ABCD.
(1)若G为AD边的中点,求证:BG⊥平面PAD;
(2)求证:AD⊥PB.
能力提升
12.如图所示,四棱锥P—ABCD的底面是边长为a的菱形,∠BCD=120°,平面PCD⊥平面ABCD,PC=a,PD=a,E为PA的中点.求证:平面EDB⊥平面ABCD.
13.如图所示,在多面体P—ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,AB=4.
(1)设M是PC上的一点,
求证:平面MBD⊥平面PAD;
(2)求P点到平面ABCD的距离.
1.运用两个平面垂直的性质定理时,一般需要作辅助线,其基本作法是过其中一个平面内一点在此平面内作交线的垂线,这样,就把面面垂直转化为线面垂直或线线垂直.
2.无论从判定还是从性质来看,线线垂直、线面垂直和面面垂直都是密切相关的,面对复杂的空间图形,要善于发现它们之间的内在联系,找出解决问题的切入点,垂直关系的转化为:
第3课时 两平面垂直的性质 答案
知识梳理
1.垂直 交线 a⊥β
2.(1)第一个平面内 a α (2)a∥α
作业设计
1.a⊥β
2.②④
3.0
解析 若存在1条,则α⊥β,与已知矛盾.
4.③
5.①②③
6.2∶1
解析 如图:
由已知得AA′⊥面β,
∠ABA′=,
BB′⊥面α,∠BAB′=,
设AB=a,则BA′=a,BB′=a,
在Rt△BA′B′中,A′B′=a,∴=.
7.①③④
解析 由性质定理知②错误.
8.7
解析 P到O的距离恰好为以2 cm,3 cm,6 cm为长、宽、高的长方体的对角线的长.
9.直线AB上
解析 由AC⊥BC1,AC⊥AB,
得AC⊥面ABC1,又AC 面ABC,
∴面ABC1⊥面ABC.
∴C1在面ABC上的射影H必在交线AB上.
10.证明 在平面PAB内,作AD⊥PB于D.
∵平面PAB⊥平面PBC,
且平面PAB∩平面PBC=PB.
∴AD⊥平面PBC.
又BC 平面PBC,
∴AD⊥BC.
又∵PA⊥平面ABC,
BC 平面ABC,
∴PA⊥BC,∴BC⊥平面PAB.
又AB 平面PAB,
∴BC⊥AB.
11.证明 
(1)连结PG,由题知△PAD为正三角形,G是AD的中点,
∴PG⊥AD.
又平面PAD⊥平面ABCD,
∴PG⊥平面ABCD,
∴PG⊥BG.
又∵四边形ABCD是菱形且∠DAB=60°,
∴BG⊥AD.
又AD∩PG=G,∴BG⊥平面PAD.
(2)由(1)可知BG⊥AD,PG⊥AD.
所以AD⊥平面PBG,所以AD⊥PB.
12.
证明 设AC∩BD=O,
连结EO,
则EO∥PC.∵PC=CD=a,
PD=a,
∴PC2+CD2=PD2,
∴PC⊥CD.
∵平面PCD⊥平面ABCD,CD为交线,
∴PC⊥平面ABCD,
∴EO⊥平面ABCD.
又EO 平面EDB,
∴平面EDB⊥平面ABCD.
13.(1)证明 在△ABD中,
∵AD=4,BD=8,AB=4,
∴AD2+BD2=AB2.∴AD⊥BD.
又∵面PAD⊥面ABCD,
面PAD∩面ABCD=AD,
BD 面ABCD,
∴BD⊥面PAD,又BD 面BDM,
∴面MBD⊥面PAD.
(2)解 
过P作PO⊥AD,
∵面PAD⊥面ABCD,
∴PO⊥面ABCD,
即PO为四棱锥P—ABCD的高.
又△PAD是边长为4的等边三角形,∴PO=2.
∴P点到平面ABCD的距离为2.1.2.2 空间两条直线的位置关系
【课时目标】 1.会判断空间两直线的位置关系.2.理解两异面直线的定义及判定定理,会求两异面直线所成的角.3.能用公理4及等角定理解决一些简单的相关证明.
1.空间两条直线的位置关系有且只有三种:________、____________、____________.
2.公理4:平行于同一条直线的两条直线____________.
3.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角________.
4.异面直线
(1)定义:________________________的两条直线叫做异面直线.
(2)判定定理:过平面内一点与平面外一点的直线,和这个平面内不经过该点的直线是______________.
5.异面直线所成的角:直线a,b是异面直线,经过空间任一点O,作直线a′,b′,使__________,__________,我们把a′与b′所成的________________叫做异面直线a与b所成的角.
如果两条直线所成的角是________,那么我们就说这两条异面直线互相垂直,两条异面直线所成的角α的取值范围是____________.
一、填空题
1.若空间两条直线a,b没有公共点,则其位置关系是____________.
2.若a和b是异面直线,b和c是异面直线,则a和c的位置关系是______________.
3.在正方体ABCD—A1B1C1D1中,与对角线AC1异面的棱共有________条.
4.空间四边形的两条对角线相互垂直,顺次连结四边中点的四边形的形状是________.
5.给出下列四个命题:
①垂直于同一直线的两条直线互相平行;
②平行于同一直线的两直线平行;
③若直线a,b,c满足a∥b,b⊥c,则a⊥c;
④若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线.
其中假命题的个数是________.
6.有下列命题:
①两条直线和第三条直线成等角,则这两条直线平行;
②四条边相等且四个角也相等的四边形是正方形;
③经过直线外一点有无数条直线和已知直线垂直;
④若∠AOB=∠A1O1B1,且OA∥O1A1,则OB∥O1B1.
其中正确命题的序号为________.
7.空间两个角α、β,且α与β的两边对应平行且α=60°,则β为________.
8.已知正方体ABCD—A′B′C′D′中:
(1)BC′与CD′所成的角为________;
(2)AD与BC′所成的角为________.
9.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:
①AB⊥EF;
②AB与CM所成的角为60°;
③EF与MN是异面直线;
④MN∥CD.
以上结论中正确结论的序号为________.
二、解答题
10.已知棱长为a的正方体ABCD-A1B1C1D1中,M,N分别是棱CD、AD的中点.
求证:(1)四边形MNA1C1是梯形;
(2)∠DNM=∠D1A1C1.
11.如图所示,在空间四边形ABCD中,AB=CD且AB与CD所成的角为30°,E、F分别是BC、AD的中点,求EF与AB所成角的大小.
能力提升
12.如图所示,G、H、M、N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填序号).
13.如图所示,在正方体AC1中,E、F分别是面A1B1C1D1和AA1D1D的中心,则EF和CD所成的角是______.
1.判定两直线的位置关系的依据就在于两直线平行、相交、异面的定义.很多情况下,定义就是一种常用的判定方法.另外,我们解决空间有关线线问题时,不要忘了我们生活中的模型,比如说教室就是一个长方体模型,里面的线线关系非常丰富,我们要好好地利用它,它是我们培养空间想象能力的好工具.
2.在研究异面直线所成角的大小时,通常把两条异面直线所成的角转化为两条相交直线所成的角.将空间问题向平面问题转化,这是我们学习立体几何的一条重要的思维途径.需要强调的是,两条异面直线所成角α的范围为0°<α≤90°,解题时经常结合这一点去求异面直线所成的角的大小.
作异面直线所成的角,可通过多种方法平移产生,主要有三种方法:①直接平移法(可利用图中已有的平行线);②中位线平移法;③补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).
1.2.2 空间两条直线的位置关系 答案
知识梳理
1.相交直线 平行直线 异面直线
2.互相平行 3.相等
4.(1)不同在任何一个平面内 (2)异面直线
5.a′∥a b′∥b 锐角(或直角) 直角 0°<α≤90°
作业设计
1.平行或异面
2.相交、平行或异面
解析 异面直线不具有传递性,可以以长方体为载体加以说明a、b异面,直线c的位置可如图所示.
3.6
4.矩形
解析 
易证四边形EFGH为平行四边形.
又∵E,F分别为AB,BC的中点,∴EF∥AC,
又FG∥BD,
∴∠EFG或其补角为AC与BD所成的角.
而AC与BD所成的角为90°,
∴∠EFG=90°,故四边形EFGH为矩形.
5.2
解析 ①④均为假命题.①可举反例,如a、b、c三线两两垂直.
④如图甲时,c、d与异面直线l1、l2交于四个点,此时c、d异面,一定不会平行;
当点A在直线a上运动(其余三点不动),会出现点A与B重合的情形,如图乙所示,此时c、d共面相交.
6.③
7.60°或120°
8.(1)60° (2)45°
解析 
连结BA′,则BA′∥CD′,连结A′C′,则∠A′BC′就是BC′与CD′所成的角.
由△A′BC′为正三角形,
知∠A′BC′=60°,
由AD∥BC,知AD与BC′所成的角就是∠C′BC.
易知∠C′BC=45°.
9.①③
解析 
把正方体平面展开图还原到原来的正方体,如图所示,AB⊥EF,EF与MN是异面直线,AB∥CM,MN⊥CD,只有①③正确.
10.
证明 (1)如图,连结AC,
在△ACD中,
∵M、N分别是CD、AD的中点,
∴MN是三角形的中位线,
∴MN∥AC,MN=AC.
由正方体的性质得:AC∥A1C1,AC=A1C1.
∴MN∥A1C1,且MN=A1C1,即MN≠A1C1,
∴四边形MNA1C1是梯形.
(2)由(1)可知MN∥A1C1,又因为ND∥A1D1,
∴∠DNM与∠D1A1C1相等或互补.
而∠DNM与∠D1A1C1均是直角三角形的锐角,
∴∠DNM=∠D1A1C1.
11.解 取AC的中点G,
连结EG、FG,
则EG∥AB,GF∥CD,
且由AB=CD知EG=FG,
∴∠GEF(或它的补角)为EF与AB所成的角,∠EGF(或它的补角)为AB与CD所成的角.
∵AB与CD所成的角为30°,
∴∠EGF=30°或150°.
由EG=FG知△EFG为等腰三角形,当∠EGF=30°时,∠GEF=75°;
当∠EGF=150°时,
∠GEF=15°.
故EF与AB所成的角为15°或75°.
12.②④
解析 ①中HG∥MN.
③中GM∥HN且GM≠HN,
∴HG、MN必相交.
13.45°
解析 连结B1D1,则E为B1D1中点,
连结AB1,EF∥AB1,
又CD∥AB,∴∠B1AB为异面直线EF与CD所成的角,
即∠B1AB=45°.
.§1.1空间几何体
1.1.1 棱柱、棱锥和棱台
1.1.2 圆柱、圆锥、圆台和球
【课时目标】 认识柱、锥、台、球的结构特征,并能运用这些特征描述现实生活中简单物体的结构.
1.一般地,由一个________________沿某一方向平移形成的空间几何体叫做棱柱.
平移起止位置的两个面叫做棱柱的________,多边形的边平移所形成的面叫做棱柱的________,两侧面的公共边叫________.
2.当棱柱的一个底面__________________时,得到的几何体叫做棱锥(如图所示).
3.棱台是棱锥被平行于底面的一个平面所截后,______和________之间的部分.
4.将________、________________、______________分别绕着它的________、______________、____________________所在的直线旋转一周,形成的几何体分别叫做圆柱、圆锥、圆台,这条直线叫做______,垂直于轴的边旋转而成的圆面叫做________,不垂直于轴的边旋转而成的曲面叫做________,无论旋转到什么位置,这条边都叫做________.
5.________绕着它的______所在的直线旋转一周所形成的曲面叫做球面,球面围成的几何体叫做______,简称______.
一、填空题
1.将梯形沿某一方向平移形成的几何体是________.
2.有下列命题:①棱柱的底面一定是多边形;②棱台的底面一定是梯形;③棱柱被平面截成的两部分可以都是棱柱;④棱锥被平面截成的两部分不可能都是棱锥.
其中正确命题的序号是________.
3.棱台具备的性质是________(填序号).
①两底面相似;
②侧面都是梯形;
③侧棱都相等;
④侧棱延长后都交于一点.
4.下列命题中正确的是________(填序号).
①有两个面平行,其余各面都是四边形的几何体叫棱柱;
②有两个面平行,其余各面都是平行四边形的几何体叫棱柱;
③有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱;
④用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台.
5.以任意方式截一个几何体,各个截面都是圆,则这个几何体一定是________.
6.右图所示的几何体是由下列哪个平面图形通过旋转得到的________(填序号).
7.下列叙述中错误的是________.(填序号)
①以直角三角形的一边为轴旋转所得的旋转体是圆锥;
②以直角梯形的一腰为轴旋转所得的旋转体是圆台;
③圆柱、圆锥、圆台的底面都是圆;
④用一个平面去截圆锥,得到一个圆锥和一个圆台.
8.如图所示的几何体是由一个圆柱挖去一个以圆柱上底面为底面,下底面圆心为顶点的圆锥而得到的组合体,现用一个竖直的平面去截这个组合体,则截面图形可能是______(填序号).
9.在下面的四个平面图形中,哪几个是侧棱都相等的四面体的展开图?其序号是______.
二、解答题
10.如图所示为长方体ABCD—A′B′C′D′,当用平面BCFE把这个长方体分成两部分后,各部分形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.
11.如图所示,已知△ABC,以AB为轴,将△ABC旋转360°.试指出这个旋转体是由怎样的简单几何体构成的?画出这个旋转体的直观图.
能力提升
12.一个三棱锥的各棱长均相等,其内部有一个内切球,即球与三棱锥的各面均相切(球在三棱锥的内部,且球与三棱锥的各面只有一个交点),过一条侧棱和对边的中点作三棱锥的截面,所得截面是下列______图形.(填序号)
13.如图,在底面半径为1,高为2的圆柱上A点处有一只蚂蚁,它要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?
1.学习本节知识,要注意结合集合的观点来认识各种几何体的性质,还要注意结合动态直观图从运动变化的观点认识棱柱、棱锥和棱台的关系.
2.在讨论旋转体的性质时轴截面具有极其重要的作用,它决定着旋转体的大小、形状,旋转体的有关元素之间的关系可以在轴截面上体现出来.轴截面是将旋转体问题转化为平面问题的关键.
3.几何体表面距离最短问题需要把表面展开在同一平面上,然后利用两点间距离的最小值是连结两点的线段长求解.
第1章 立体几何初步
§1.1 空间几何体
1.1.1 棱柱、棱锥和棱台
1.1.2 圆柱、圆锥、圆台和球
答案
知识梳理
1.平面多边形 底面 侧面 侧棱
2.收缩为一个点
3.截面 底面
4.矩形 直角三角形 直角梯形 一边 一直角边 垂直于底边的腰 轴 底面 侧面 母线
5.半圆 直径 球体 球
作业设计
1.四棱柱 2.①③
3.①②④
解析 用棱台的定义去判断.
4.③
解析 ①、②的反例图形如图所示,④显然不正确.
5.球体 6.① 7.①②③④
8.(1)(5)
解析 一个圆柱挖去一个圆锥后,剩下的几何体被一个竖直的平面所截后,圆柱的轮廓是矩形除去一条边,圆锥的轮廓是三角形除去一条边或抛物线的一部分.
9.①②
10.解 截面BCFE右侧部分是棱柱,因为它满足棱柱的定义.
它是三棱柱BEB′—CFC′,其中△BEB′和△CFC′是底面.
EF,B′C′,BC是侧棱,
截面BCFE左侧部分也是棱柱.
它是四棱柱ABEA′—DCFD′.
其中四边形ABEA′和四边形DCFD′是底面.
A′D′,EF,BC,AD为侧棱.
11.解 这个旋转体可由一个大圆锥挖去一个同底面的小圆锥而得到,直观图如图所示.
12.②
13.解 把圆柱的侧面沿AB剪开,然后展开成为平面图形——矩形,如图所示,连结AB′,则AB′即为蚂蚁爬行的最短距离.
∵AB=A′B′=2,AA′为底面圆的周长,且AA′=2π×1=2π,
∴AB′=
==2,
即蚂蚁爬行的最短距离为2.
1.1.3 中心投影和平行投影
【课时目标】 1.了解中心投影和平行投影.2.能画出简单空间图形(柱、锥、台、球及其组合体)的三视图.3.能识别三视图所表示的立体模型.
1.平行投影与中心投影的不同之处在于:平行投影的投影线是________,而中心投影的投影线________.
2.三视图包括__________、__________和__________,其中几何体的____________和__________高度一样,__________与____________长度一样,__________与__________宽度一样.
一、选择题
1.人在灯光下走动,当人逐渐远离灯光时,其影子的长度将________.
2.两条相交直线的平行投影是________.
3.如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是(填序号)________.
4.一个长方体去掉一角的直观图如图所示,关于它的三视图,下列画法正确的是________(填序号).
5.某几何体的三视图如图所示,那么这个几何体是________________________________.
6.若一个三棱柱的三视图如图所示,则这个三棱柱的高(两底面之间的距离)和底面边长分别是________和________.
7.用小正方体搭成一个几何体,如图是它的主视图和左视图,搭成这个几何体的小正方体的个数最多为________个.
8.根据如图所示俯视图,找出对应的物体.
(1)对应________;(2)对应________;
(3)对应________;(4)对应________;
(5)对应________.
9.如图1所示,E,F分别为正方体的面AD1,BC1的中心,则四边形BFD1E在该正方体的面上的正投影可能是图2中的________.(填上可能的序号)
二、解答题
10.在下面图形中,图(b)是图(a)中实物画出的主视图和俯视图,你认为正确吗?如果不正确,请找出错误并改正,然后画出左视图(尺寸不作严格要求).
11.如图是截去一角的长方体,画出它的三视图.
能力提升
12.如图,螺栓是棱柱和圆柱的组合体,画出它的三视图.
13.用小立方体搭成一个几何体,使它的主视图和俯视图如图所示,搭建这样的几何体,最多要几个小立方体?最少要几个小立方体?
 在绘制三视图时,要注意以下三点:
1.若两相邻物体的表面相交,表面的交线是它们的原分界线,在三视图中,分界线和可见轮廓都用实线画出,不可见轮廓用虚线画出.
2.一个物体的三视图的排列规则是:俯视图放在主视图的下面,长度和主视图一样.左视图放在主视图的右面,高度和主视图一样,宽度和俯视图一样,简记为“长对正,高平齐,宽相等”.
3.在画物体的三视图时应注意观察角度,角度不同,往往画出的三视图不同.
1.1.3 中心投影和平行投影
答案
知识梳理
1.平行的 交于一点
2.主视图 左视图 俯视图 左视图 主视图 俯视图 主视图 左视图 俯视图
作业设计
1.变长
解析 中心投影的性质.
2.两条相交直线或一条直线
3.②④
解析 在各自的三视图中①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.
4.① 5.四棱锥
6.2 4
解析 三棱柱的高同左视图的高,左视图的宽度恰为底面正三角形的高,故底边长为4.
7.7
8.(1)D (2)A (3)E (4)C (5)B
9.②③
解析 图②为四边形BFD1E在正方体前后及上下面上的正投影,
③为其在左右侧面上的正投影.
10.解 图(a)是由两个长方体组合而成的,主视图正确,俯视图错误,俯视图应该画出不可见轮廓线(用虚线表示),左视图轮廓是一个矩形,有一条可视的交线(用实线表示),正确画法如图所示.
11.解 该图形的三视图如图所示.
12.解 该物体是由一个正六棱柱和一个圆柱组合而成的,主视图反映正六棱柱的三个侧面和圆柱侧面,左视图反映正六棱柱的两个侧面和圆柱侧面,俯视图反映该物体投影后是一个正六边形和一个圆(中心重合).它的三视图如图所示.
13.解 由于主视图中每列的层数即是俯视图中该列的最大数字,因此,用的立方块数最多的情况是每个方框都用该列的最大数字,即如图①所示,此种情况共用小立方块17块.
而搭建这样的几何体用方块数最少的情况是每列只要有一个最大的数字,其他方框内的数字可减少到最少的1,即如图②所示,这样的摆法只需小立方块11块.
1.1.4 直观图画法
【课时目标】 1.了解斜二测画法的概念.2.会用斜二测画法画出一些简单的平面图形和立体图形的直观图.
用斜二测画法画水平放置的平面图形直观图的步骤:
(1)在空间图形中取互相________的x轴和y轴,两轴交于O点,再取z轴,使∠xOz=________,且∠yOz=________.
(2)画直观图时把它们画成对应的x′轴、y′轴和z′轴,它们相交于O′,并使∠x′O′y′=______(或______),∠x′O′z′=________,x′轴和y′轴所确定的平面表示水平面.
(3)已知图形中平行于x轴、y轴或z轴的线段,在直观图中分别画成平行于x′轴、y′轴或z′轴的线段.
(4)已知图形中平行于x轴或z轴的线段,在直观图中保持原长度________;平行于y轴的线段,长度为原来的________.
一、填空题
1.下列结论:
①角的水平放置的直观图一定是角;
②相等的角在直观图中仍然相等;
③相等的线段在直观图中仍然相等;
④两条平行线段在直观图中对应的两条线段仍然平行.
其中正确的有__________(填序号).
2.具有如图所示直观图的平面图形ABCD的形状是____________.
3.如图,正方形O′A′B′C′的边长为1 cm,它是水平放置的一个平面图形的直观图,则原图的周长是________ cm.
4.下面每个选项的2个边长为1的正△ABC的直观图不是全等三角形的一组是______(填序号).
5.△ABC面积为10,以它的一边为x轴画出直观图,其直观图的面积为________.
6.一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积等于__________.
7.利用斜二测画法得到:
①三角形的直观图是三角形;
②平行四边形的直观图是平行四边形;
③正方形的直观图是正方形;
④菱形的直观图是菱形.
以上结论,正确的是______________.
8.水平放置的△ABC的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB边上的中线的实际长度为____________.
9.如图所示,为一个水平放置的正方形ABCO,它在直角坐标系xOy中,点B的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B′到x′轴的距离为______.
二、解答题
10.如图所示,已知几何体的三视图,用斜二测画法画出它的直观图.
11.如图所示,梯形ABCD中,AB∥CD,AB=4 cm,CD=2 cm,∠DAB=30°,AD=3 cm,试画出它的直观图.
能力提升
12.已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,那么原△ABC的面积为________.
13.在水平放置的平面α内有一个边长为1的正方形A′B′C′D′,如图,其中的对角线A′C′在水平位置,已知该正方形是某个四边形用斜二测画法画出的直观图,试画出该四边形的真实图形并求出其面积.
 直观图与原图形的关系
1.斜二测画法是联系直观图和原图形的桥梁,可根据它们之间的可逆关系寻找它们的联系;在求直观图的面积时,可根据斜二测画法,画出直观图,从而确定其高和底边等;而求原图形的面积可把直观图还原为原图形;此类题易混淆原图形与直观图中的垂直关系而出错,在原图形中互相垂直的直线在直观图中不一定垂直,反之也是.所以在求面积时应按照斜二测画法的规则把原图形与直观图都画出来,找出改变量与不变量.用斜二测画法画出的水平放置的平面图形的直观图的面积是原图形面积的倍.
2.在用斜二测画法画直观图时,平行线段仍然平行,所画平行线段之比仍然等于它的真实长度之比,但所画夹角大小不一定是其真实夹角大小.
1.1.4 直观图画法 答案
知识梳理
(1)垂直 90° 90° (2)45° 135° 90°
(4)不变 一半
作业设计
1.①②⑤
解析 由斜二测画法的规则判断.
2.直角梯形
3.8
解析 
根据直观图的画法,原几何图形如图所示,四边形OABC为平行四边形,OB=2,OA=1,AB=3,从而原图周长为8 cm.
4.③
5.
解析 设△ABC面积为S,
则直观图面积S′=S=.
6.2+
解析 如图1所示,等腰梯形A′B′C′D′为水平放置的原平面图形的直观图,作D′E′∥A′B′交B′C′于E′,由斜二测直观图画法规则,直观图是等腰梯形A′B′C′D′的原平面图形为如图2所示的直角梯形ABCD,且AB=2,BC=1+,AD=1,所以SABCD=2+.
  
    图1        图2
7.①②
解析 斜二测画法得到的图形与原图形中的线线相交、相对线线平行关系不会改变,因此三角形的直观图是三角形,平行四边形的直观图是平行四边形.
8.2.5
解析 由直观图知,原平面图形为直角三角形,且AC=A′C′=3,BC=2B′C′=4,计算得AB=5,所求中线长为2.5.
9.
解析 
画出直观图,则B′到x′轴的距离为·OA=OA=.
10.解 (1)作出长方体的直观图ABCD-A1B1C1D1,如图a所示;
(2)再以上底面A1B1C1D1的对角线交点为原点建立x′,y′,z′轴,如图b所示,在z′上取点V′,使得V′O′的长度为棱锥的高,连结V′A1,V′B1,V′C1,V′D1,得到四棱锥的直观图,如图b;
(3)擦去辅助线和坐标轴,遮住部分用虚线表示,得到几何体的直观图,如图c.
11.解 (1)如图a所示,在梯形ABCD中,以边AB所在的直线为x轴,点A为原点,建立平面直角坐标系xOy.如图b所示,画出对应的x′轴,y′轴,使∠x′O′y′=45°.
(2)在图a中,过D点作DE⊥x轴,垂足为E.在x′轴上取A′B′=AB=4 cm,A′E′=AE=≈2.598 cm;过点E′作E′D′∥y′轴,使E′D′=ED,再过点D′作D′C′∥x′轴,且使D′C′=DC=2 cm.
(3)连结A′D′、B′C′,并擦去x′轴与y′轴及其他一些辅助线,如图c所示,则四边形A′B′C′D′就是所求作的直观图.
12.a2
解析 画△ABC直观图如图(1)所示:
则A′D′=a,又∠x′O′y′=45°,∴A′O′=a.
画△ABC的实际图形,
如图(2)所示,AO=2A′O′=a,BC=B′C′=a,
∴S△ABC=BC·AO=a2.
13.
解 四边形ABCD的真实图形如图所示,
∵A′C′在水平位置,A′B′C′D′为正方形,
∴∠D′A′C′=∠A′C′B′=45°,
∴在原四边形ABCD中,
DA⊥AC,AC⊥BC,∵DA=2D′A′=2,
AC=A′C′=,
∴S四边形ABCD=AC·AD=2.
.§1.2 点、线、面之间的位置关系
1.2.1 平面的基本性质
【课时目标】 1.了解平面的概念及表示法.2.了解公理1、2、3及推论1、2、3,并能用文字语言、图形语言和符号语言分别表述.
1.公理1:如果一条直线上的________在一个平面内,那么这条直线上所有的点都在这个平面内.用符号表示为:________________.
2.公理2:如果________________________________,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的______________.
用符号表示为: α∩β=l且P∈l.
3.公理3:经过不在同一条直线上的三点,________________________.公理3也可简单地说成,不共线的三点确定一个平面.
(1)推论1 经过________________________________________,有且只有一个平面.
(2)推论2 经过____________,有且只有一个平面.
(3)推论3 经过____________,有且只有一个平面.
一、填空题
1.下列命题:
①书桌面是平面;
②8个平面重叠起来,要比6个平面重叠起来厚;
③有一个平面的长是50 m,宽是20 m;
④平面是绝对的平、无厚度,可以无限延展的抽象数学概念.
其中正确命题的个数为________.
2.若点M在直线b上,b在平面β内,则M、b、β之间的关系用符号可记作____________.
3.已知平面α与平面β、γ都相交,则这三个平面可能的交线有________条.
4.已知α、β为平面,A、B、M、N为点,a为直线,下列推理错误的是__________(填序号).
①A∈a,A∈β,B∈a,B∈β a β;
②M∈α,M∈β,N∈α,N∈β α∩β=MN;
③A∈α,A∈β α∩β=A;
④A、B、M∈α,A、B、M∈β,且A、B、M不共线 α、β重合.
5.空间中可以确定一个平面的条件是________.(填序号)
①两条直线; ②一点和一直线;
③一个三角形; ④三个点.
6.空间有四个点,如果其中任意三个点不共线,则经过其中三个点的平面有__________个.
7.把下列符号叙述所对应的图形(如图)的序号填在题后横线上.
(1)AD/∈α,a α________.
(2)α∩β=a,PD/∈α且PD/∈β________.
(3)a α,a∩α=A________.
(4)α∩β=a,α∩γ=c,β∩γ=b,a∩b∩c=O________.
8.已知α∩β=m,a α,b β,a∩b=A,则直线m与A的位置关系用集合符号表示为________.
9.下列四个命题:
①两个相交平面有不在同一直线上的三个公共点;
②经过空间任意三点有且只有一个平面;
③过两平行直线有且只有一个平面;
④在空间两两相交的三条直线必共面.
其中正确命题的序号是________.
二、解答题
10.如图,直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线,并说明理由.
11.如图所示,四边形ABCD中,已知AB∥CD,AB,BC,DC,AD(或延长线)分别与平面α相交于E,F,G,H,求证:E,F,G,H必在同一直线上.
能力提升
12.空间中三个平面两两相交于三条直线,这三条直线两两不平行,证明三条直线必相交于一点.
13.如图,在正方体ABCD-A1B1C1D1中,对角线A1C与平面BDC1交于点O,AC、BD交于点M,E为AB的中点,F为AA1的中点.
求证:(1)C1、O、M三点共线;
(2)E、C、D1、F四点共面;
(3)CE、D1F、DA三线共点.
1.证明几点共线的方法:先考虑两个平面的交线,再证有关的点都是这两个平面的公共点,或先由某两点作一直线,再证明其他点也在这条直线上.
2.证明点线共面的方法:先由有关元素确定一个基本平面,再证其他的点(或线)在这个平面内;或先由部分点线确定平面,再由其他点线确定平面,然后证明这些平面重合.注意对诸如“两平行直线确定一个平面”等依据的证明、记忆与运用.
3.证明几线共点的方法:先证两线共点,再证这个点在其他直线上,而“其他”直线往往归结为平面与平面的交线.
§1.2 点、线、面之间的位置关系
1.2.1 平面的基本性质
答案
知识梳理
1.两点  AB α
2.两个平面有一个公共点 一条直线
3.有且只有一个平面 (1)一条直线和这条直线外的一点 (2)两条相交直线 (3)两条平行直线
作业设计
1.1
解析 由平面的概念,它是平滑、无厚度、可无限延展的,可以判断命题④正确,其余的命题都不符合平面的概念,所以命题①、②、③都不正确.
2.M∈b β 3.1,2或3
4.③
解析 ∵A∈α,A∈β,∴A∈α∩β.
由公理可知α∩β为经过A的一条直线而不是A.
故α∩β=A的写法错误.
5.③
6.1或4
解析 四点共面时有1个平面,四点不共面时有4个平面.
7.(1)C (2)D (3)A (4)B
8.A∈m
解析 因为α∩β=m,A∈a α,所以A∈α,
同理A∈β,故A在α与β的交线m上.
9.③
10.解 很明显,点S是平面SBD和平面SAC的一个公共点,即点S在交线上,由于AB>CD,则分别延长AC和BD交于点E,如图所示.
∵E∈AC,AC 平面SAC,
∴E∈平面SAC.
同理,可证E∈平面SBD.
∴点E在平面SBD和平面SAC的交线上,连结SE,
直线SE是平面SBD和平面SAC的交线.
11.证明 因为AB∥CD,所以AB,CD确定平面AC,AD∩α=H,因为H∈平面AC,H∈α,由公理3可知,H必在平面AC与平面α的交线上.同理F、G、E都在平面AC与平面α的交线上,因此E,F,G,H必在同一直线上.
12.证明 
∵l1 β,l2 β,l1l2,
∴l1∩l2交于一点,记交点为P.
∵P∈l1 β,P∈l2 γ,
∴P∈β∩γ=l3,
∴l1,l2,l3交于一点.
13.证明 (1)∵C1、O、M∈平面BDC1,
又C1、O、M∈平面A1ACC1,由公理3知,点C1、O、M在平面BDC1与平面A1ACC1的交线上,
∴C1、O、M三点共线.
(2)∵E,F分别是AB,A1A的中点,
∴EF∥A1B.
∵A1B∥CD1,∴EF∥CD1.
∴E、C、D1、F四点共面.
(3)由(2)可知:四点E、C、D1、F共面.
又∵EF=A1B.
∴D1F,CE为相交直线,记交点为P.
则P∈D1F 平面ADD1A1,
P∈CE 平面ADCB.
∴P∈平面ADD1A1∩平面ADCB=AD.
∴CE、D1F、DA三线共点.习题课
【课时目标】 1.能熟练应用直线、平面平行与垂直的判定及性质进行有关的证明.2.进一步体会化归思想在证明中的应用.
a、b、c表示直线,α、β、γ表示平面.
位置关系 判定定理(符号语言) 性质定理(符号语言)
直线与平面平行 a∥b且__________ a∥α a∥α,________________ a∥b
平面与平面平行 a∥α,b∥α,且________________ α∥β α∥β,________________ a∥b
直线与平面垂直 l⊥a,l⊥b,且____________ l⊥α a⊥α,b⊥α ____
平面与平面垂直 a⊥α,____ α⊥β α⊥β,α∩β=a,__________ b⊥β
一、填空题
1.不同直线m、n和不同平面α、β.给出下列命题:
① m∥β; ② n∥β;
③ m,n异面; ④ m⊥β.
其中假命题的个数为________.
2.下列命题中:(1)平行于同一直线的两个平面平行;(2)平行于同一平面的两个平面平行;(3)垂直于同一直线的两直线平行;(4)垂直于同一平面的两直线平行.其中正确命题的为________.
3.若a、b表示直线,α表示平面,下列命题中正确的有________个.
①a⊥α,b∥α a⊥b;②a⊥α,a⊥b b∥α;③a∥α,a⊥b b⊥α.
4.过平面外一点P:①存在无数条直线与平面α平行;②存在无数条直线与平面α垂直;③有且只有一条直线与平面α平行;④有且只有一条直线与平面α垂直,其中真命题的个数是________.
5.如图所示,正方体ABCD-A1B1C1D1中,点P在侧面BCC1B1及其边界上运动,并且总是保持AP⊥BD1,则动点P的轨迹是________.
6.设a,b为两条直线,α,β为两个平面,下列四个命题中,正确的命题是________.
①若a,b与α所成的角相等,则a∥b;
②若a∥α,b∥β,α∥β,则a∥b;
③若a α,b β,a∥b,则α∥β;
④若a⊥α,b⊥β,α⊥β,则a⊥b.
7.三棱锥D-ABC的三个侧面分别与底面全等,且AB=AC=,BC=2,则二面角A-BC-D的大小为______.
8.如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”,在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是________.
9.如图所示,在正方体ABCD-A1B1C1D1中,P为BD1的中点,则△PAC在该正方体各个面上的射影可能是________.(填序号)
二、解答题
10.如图所示,△ABC为正三角形,EC⊥平面ABC,BD∥CE,且CE=CA=2BD,M是EA的中点,求证:
(1)DE=DA;
(2)平面BDM⊥平面ECA;
(3)平面DEA⊥平面ECA.
11.如图,棱柱ABC-A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B.
(1)证明:平面AB1C⊥平面A1BC1;
(2)设D是A1C1上的点且A1B∥平面B1CD,求的值.
能力提升
12.四棱锥P—ABCD的顶点P在底面ABCD中的投影恰好是A,其三视图如图:
(1)根据图中的信息,在四棱锥P—ABCD的侧面、底面和棱中,请把符合要求的结论填写在空格处(每空只要求填一种):
①一对互相垂直的异面直线________;
②一对互相垂直的平面________;
③一对互相垂直的直线和平面________;
(2)四棱锥P—ABCD的表面积为________.(棱锥的表面积等于棱锥各面的面积之和)
13.如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF,EF∥AB,EF⊥FB,BF=FC,H为BC的中点.
(1)求证:FH∥平面EDB;
(2)求证:AC⊥平面EDB.
转化思想是证明线面平行与垂直的主要思路,其关系为
即利用线线平行(垂直),证明线面平行(垂直)或证明面面平行(垂直);反过来,又利用面面平行(垂直),证明线面平行(垂直)或证明线线平行(垂直),甚至平行与垂直之间的转化.这样,来来往往,就如同运用“四渡赤水”的战略战术,达到了出奇制胜的目的.
习题课 答案
知识梳理
位置关系 判定定理(符号语言) 性质定理(符号语言)
直线与平面平行 a∥b且a α,b α a∥α a∥α,a β,α∩β=b a∥b
平面与平面平行 a∥α,b∥α,且a β,b β,a∩b=P α∥β α∥β,α∩γ=a,β∩γ=b a∥b
直线与平面垂直 l⊥a,l⊥b,且a α,b α,a∩b=P l⊥α a⊥α,b⊥α a∥b
平面与平面垂直 a⊥α,a β α⊥β α⊥β,α∩β=a,b⊥a,b α b⊥β
作业设计
1.3
解析 命题①正确,面面平行的性质;命题②不正确,也可能n β;命题③不正确,如果m、n有一条是α、β的交线,则m、n共面;命题④不正确,m与β的关系不确定.
2.2
解析 (2)和(4)对.
3.1
解析 ①正确.
4.2
解析 ①④正确.
5.线段B1C
解析 连结AC,AB1,B1C,
∵BD⊥AC,AC⊥DD1,
BD∩DD1=D,
∴AC⊥面BDD1,
∴AC⊥BD1,
同理可证BD1⊥B1C,
∴BD1⊥面AB1C.
∴P∈B1C时,始终AP⊥BD1.
6.④
7.90°
解析 
由题意画出图形,数据如图,取BC的中点E,
连结AE、DE,易知∠AED为二面角A—BC—D的平面角.
可求得AE=DE=,由此得AE2+DE2=AD2.
故∠AED=90°.
8.36
解析 正方体的一条棱长对应着2个“正交线面对”,12条棱长共对应着24个“正交线面对”;正方体的一条面对角线对应着1个“正交线面对”,12条面对角线对应着12个“正交线面对”,共有36个.
9.①④
10.证明 (1)如图所示,
取EC的中点F,连结DF,∵EC⊥平面ABC,
∴EC⊥BC,又由已知得DF∥BC,
∴DF⊥EC.
在Rt△EFD和Rt△DBA中,
∵EF=EC=BD,
FD=BC=AB,
∴Rt△EFD≌Rt△DBA,
故ED=DA.
(2)取CA的中点N,连结MN、BN,
则MN綊EC,
∴MN∥BD,∴N在平面BDM内,
∵EC⊥平面ABC,∴EC⊥BN.又CA⊥BN,
∴BN⊥平面ECA,BN 平面MNBD,
∴平面MNBD⊥平面ECA.
即平面BDM⊥平面ECA.
(3)∵BD綊EC,MN綊EC,
∴BD綊MN,
∴MNBD为平行四边形,
∴DM∥BN,∵BN⊥平面ECA,
∴DM⊥平面ECA,又DM 平面DEA,
∴平面DEA⊥平面ECA.
11.(1)证明 因为侧面BCC1B1是菱形,
所以B1C⊥BC1.
又B1C⊥A1B,
且A1B∩BC1=B,
所以B1C⊥平面A1BC1.
又B1C 平面AB1C,
所以平面AB1C⊥平面A1BC1.
(2)解 设BC1交B1C于点E,连结DE,则DE是平面A1BC1与平面B1CD的交线.
因为A1B∥平面B1CD,所以A1B∥DE.
又E是BC1的中点,所以D为A1C1的中点,
即=1.
12.(1)①PA⊥BC(或PA⊥CD或AB⊥PD)
②平面PAB⊥平面ABCD(或平面PAD⊥平面ABCD或平面PAB⊥平面PAD或平面PCD⊥平面PAD或平面PBC⊥平面PAB)
③PA⊥平面ABCD(或AB⊥平面PAD或CD⊥平面PAD或AD⊥平面PAB或BC⊥平面PAB)
(2)2a2+a2
解析 (2)依题意:正方形的面积是a2,
S△PAB=S△PAD=a2.
又PB=PD=a,∴S△PBC=S△PCD=a2.
所以四棱锥P—ABCD的表面积是
S=2a2+a2.
13.
(1)证明 如图,设AC与BD交于点G,则G为AC的中点.连结EG,GH,由于H为BC的中点,
故GH綊AB.
又EF綊AB,∴EF綊GH.
∴四边形EFHG为平行四边形.
∴EG∥FH.
而EG 平面EDB,FH 平面EDB,
∴FH∥平面EDB.
(2)证明 由四边形ABCD为正方形,
得AB⊥BC.
又EF∥AB,∴EF⊥BC.
而EF⊥FB,∴EF⊥平面BFC.
∴EF⊥FH.
∴AB⊥FH.
又BF=FC,H为BC的中点,∴FH⊥BC.
∴FH⊥平面ABCD.∴FH⊥AC.
又FH∥EG,∴AC⊥EG.
又AC⊥BD,EG∩BD=G,
∴AC⊥平面EDB.§1.3 空间几何体的表面积和体积
1.3.1 空间几何体的表面积
【课时目标】 1.进一步认识柱体、锥体、台体及简单组合体的结构特征,了解它们的有关概念.2.了解柱体、锥体、台体的表面积的计算公式.3.会利用柱体、锥体、台体的表面积公式解决一些简单的实际问题.
1.常见的几个特殊多面体的定义
(1)__________________的棱柱叫做直棱柱.
(2)正棱柱是指底面为____________的直棱柱.
(3)如果一个棱锥的底面是____________,并且顶点在底面的正投影是底面中心,我们称这样的棱锥为正棱锥.正棱锥的侧棱长都相等.
(4)正棱锥被______________的平面所截,______________之间的部分叫做正棱台.
2.直棱柱、正棱锥、正棱台的侧面展开图及侧面积
(1)直棱柱的侧面展开图是____________(矩形的长等于直棱柱的底面周长c,宽等于直棱柱的高h),则S直棱柱侧=______;
(2)正棱锥的侧面展开图是由各个侧面均为全等等腰三角形组成的图形(正棱锥底面周长为c,斜高为h′),则S正棱锥侧=__________;
(3)正棱台的侧面展开图是由各个侧面均为全等等腰梯形组成的图形,(正棱台的上、下底面周长分别为c′,c,斜高为h′),则有:S正棱台侧=____________..
3.圆柱、圆锥、圆台的侧面展开图及侧面积
圆柱、圆锥、圆台的侧面展开图分别是____________、________和________.
S圆柱侧=2πrl,S圆锥侧=cl=πrl
S圆台侧=(c+c′)l=π(r+r′)l
一、填空题
1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为________.
2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比为__________.
3.中心角为135°,面积为B的扇形围成一个圆锥,若圆锥的全面积为A,则A∶B=__________.
4.三视图如图所示的几何体的表面积是__________.
5.一个长方体的长、宽、高分别为9,8,3,若在上面钻一个圆柱形孔后其表面积没有变化,则孔的半径为________.
6.正六棱锥的高为4 cm,底面最长的对角线为4 cm,则它的侧面积为________ cm2.
7.底面是菱形的直棱柱,且侧棱长为5,它的体对角线的长分别是9和15,则这个棱柱的侧面积是________.
8.一个正四棱柱的体对角线的长是9 cm,全面积等于144 cm2,则这个棱柱的侧面积为________ cm2.
9.如图(1)所示,已知正方体面对角线长为a,沿阴影面将它切割成两块,拼成如图(2)所示的几何体,那么此几何体的表面积为________.
二、解答题
10.已知正四棱台(上、下底是正方形,上底面的中心在下底面的投影是下底面中心)上底面边长为6,高和下底面边长都是12,求它的侧面积.
11.圆台的上、下底面半径分别为10 cm和20 cm.它的侧面展开图扇环的圆心角为180°,那么圆台的表面积是多少?(结果中保留π)
12.有一塔形几何体由3个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,求该塔形的表面积(含最底层正方体的底面面积).
能力提升
13.如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).
(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米);
(2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素).
1.在解决棱锥、棱台的侧面积、表面积及体积问题时往往将已知条件归结到一个直角三角形中求解,为此在解此类问题时,要注意直角三角形的应用.
2.有关旋转体的表面积的计算要充分利用其轴截面,就是说将已知条件尽量归结到轴截面中求解.而对于圆台有时需要将它还原成圆锥,再借助相似的相关知识求解.
§1.3 空间几何体的表面积和体积
1.3.1 空间几何体的表面积
答案
知识梳理
1.(1)侧棱和底面垂直 (2)正多边形 (3)正多边形
(4)平行于底面 截面和底面
2.(1)一个矩形 ch (2)ch′ (3)(c+c′)h′
3.矩形 扇形 扇环
作业设计
1.
解析 易知2πr=4,则2r=,
所以轴截面面积=×2=.
2.
解析 设底面半径为r,侧面积=4π2r2,全面积为=2πr2+4π2r2,其比为:.
3.11∶8
解析 设圆锥的底面半径为r,母线长为l,
则2πr=πl,则l=r,所以
A=πr2+πr2=πr2,B=πr2,
得A∶B=11∶8.
4.7+
解析 图中的几何体可看成是一个底面为直角梯形的直棱柱.直角梯形的上底为1,下底为2,高为1,棱柱的高为1.可求得直角梯形的四条边的长度为1,1,2,,表面积S表面=2S底+S侧面=(1+2)×1×2+(1+1+2+)×1=7+.
5.3
解析 由题意知,圆柱侧面积等于圆柱上、下底面和,即2πr×3=2πr2,所以r=3.
6.30
解析 由题意知,底面边长为2 cm,
侧棱长为l==2 cm,
斜高h′==5 (cm),
∴S侧=6··2·5=30 (cm2).
7.160
解析 设底面边长是a,底面的两条对角线分别为l1,l2,而l=152-52,l=92-52,而l+l=4a2,即152-52+92-52=4a2,a=8,S侧面积=ch=4×8×5=160.
8.112
解析 设底面边长、侧棱长分别为a、l,
,∴,
∴S侧=4·4·7=112 (cm2).
9.(2+)a2
解析 由已知可得正方体的边长为a,新几何体的表面积为S表=2×a×a+4×2
=(2+)a2.
10.
解 如图,E、E1分别是BC、B1C1的中点,O、O1分别是下、上底面正方形的中心,则O1O为正四棱台的高,则O1O=12.
连结OE、O1E1,则OE=AB
=×12=6,O1E1=A1B1=3.
过E1作E1H⊥OE,垂足为H,
则E1H=O1O=12,OH=O1E1=3,
HE=OE-O1E1=6-3=3.
在Rt△E1HE中,E1E2=E1H2+HE2=122+32
=32×42+32=32×17,
所以E1E=3.
所以S侧=4××(B1C1+BC)×E1E
=2×(12+6)×3=108.
11.解 
如图所示,设圆台的上底面周长为c,因为扇环的圆心角是180°,
故c=π·SA=2π×10,
所以SA=20,
同理可得SB=40,
所以AB=SB-SA=20,
∴S表面积=S侧+S上+S下
=π(r1+r2)·AB+πr+πr
=π(10+20)×20+π×102+π×202
=1 100π(cm2).
故圆台的表面积为1 100π cm2.
12.解 易知由下向上三个正方体的棱长依次为2,,1.
考虑该几何体在水平面的投影,可知其水平面的面积之和为下底面积最大正方体的底面面积的二倍.
∴S表=2S下+S侧
=2×22+4×[22+()2+12]=36.
∴该几何体的表面积为36.
13.解 由题意可知矩形的高即圆柱的母线长为=1.2-2r,
∴塑料片面积S=πr2+2πr(1.2-2r)=πr2+2.4πr-4πr2=-3πr2+2.4πr=-3π(r2-0.8r)=-3π(r-0.4)2+0.48π.
∴当r=0.4时,S有最大值0.48π,约为1.51平方米.
(2)若灯笼底面半径为0.3米,
则高为1.2-2×0.3=0.6(米).
制作灯笼的三视图如图.
1.3.2 空间几何体的体积
【课时目标】 1.了解柱、锥、台、球的体积公式.2.会利用柱体、锥体、台体的体积公式解决一些简单的实际问题.
1.柱体、锥体、台体的体积
柱体:V=______,V圆柱=________.
锥体:V=________,V圆锥=________.
台体:V=____________,
V圆台=πh(r′2+r′r+r2).
其中S、S′为底面面积,h为高,r、r′为底面半径.
2.球的表面积和体积
S球=________,V球=__________
其中R是球的半径.
一、填空题
1.把球的表面积扩大到原来的2倍,那么体积扩大到原来的________倍.
2.正方体的内切球和外接球的体积之比为__________.
3.长方体的一个顶点上的三条棱长分别为3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积为________.
4.一个圆锥与一个球的体积相等,圆锥的底面半径是球半径的3倍,圆锥的高与球半径之比为________.
5.设某几何体的三视图如下(尺寸的长度单位为m).
则该几何体的体积为________m3.
6.棱长为a的正方体中,连结相邻面的中心,以这些线段为棱的八面体的体积为________.
7.已知一个球与一个正三棱柱的三个侧面和两个底面相切,若这个球的体积是,则这个三棱柱的体积是________.
8.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是______cm3.
9.圆柱形容器内盛有高度为8 cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是______cm.
二、解答题
10.如图所示,在三棱柱ABC-A1B1C1中,E、F分别为AB、AC的中点,平面EB1C1F将三棱柱分成两部分,求这两部分的体积之比.
11.已知正三棱锥V—ABC的主视图,俯视图如图所示,其中VA=4,AC=2,求该三棱锥的表面积与体积.
能力提升
12.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.
13.有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,求这三个球的表面积之比.
1.利用球的半径、球心到截面圆的距离、截面圆的半径可构成直角三角形,进行相关计算.
2.解决球与其他几何体的切接问题,通常作截面,将球与几何体的各量体现在平面图形中,再进行相关计算.
3.柱体、锥体、台体的体积之间的内在关系为
V柱体=ShV台体=h(S++S′)V锥体=Sh.
4.“割补”是求体积的一种常用策略,运用时,要注意弄清割补前后几何体体积之间的数量关系.
1.3.2 空间几何体的体积 答案
知识梳理
1.Sh πr2h Sh πr2h (S′++S)h
2.4πR2 πR3
作业设计
1.2
解析 由面积扩大的倍数可知半径扩大为原来的倍,则体积扩大到原来的2倍.
2.1∶3
解析 关键要清楚正方体内切球的直径等于棱长a,外接球的直径等于a.
两球体积之比为a3:(a)3=1∶3.
3.50π
解析 外接球的直径2R=长方体的体对角线
=(a、b、c分别是长、宽、高).
4.4∶9
解析 设球半径为r,圆锥的高为h,
则π(3r)2h=πr3,可得h∶r=4∶9.
5.4
解析 由三视图可知原几何体是一个三棱锥,且三棱锥的高为2,底面三角形的一边长为4,且该边上的高为3,故所求三棱锥的体积为V=××3×4×2=4 m3.
6.
解析 连结正方体各面中心构成的八面体由两个棱长为a的正四棱锥组成,正四棱锥的高为,则八面体的体积为V=2××(a)2·=.
7.48
解析 由πR3=,得R=2.
∴正三棱柱的高h=4.
设其底面边长为a,则·a=2,∴a=4.
∴V=(4)2·4=48.
8.144
解析 此几何体为正四棱台与正四棱柱的组合体,而V正四棱台=(82+42+)×3=112,V正四棱柱=4×4×2=32,故V=112+32=144.
9.4
解析 设球的半径为r cm,则πr2×8+πr3×3
=πr2×6r.解得r=4.
10.解 截面EB1C1F将三棱柱分成两部分,一部分是三棱台AEF-A1B1C1,另一部分是一个不规则几何体,故可以利用棱柱的体积减去棱台的体积求得.
设棱柱的底面积为S,高为h,则△AEF的面积为S,由于V1=VAEF-A1B1C1=·h·(+S+)=hS,剩余的不规则几何体的体积为V2=V-V1=hS-hS=hS,所以两部分的体积之比为V1∶V2=7∶5.
11.解 
由主视图与俯视图可得正三棱锥的直观图如图所示,且VA=VB=VC=4,AB=BC=AC=2,
取BC的中点D,连结VD,
则VD===,
∴S△VBC=×VD×BC
=××2=,
S△ABC=×(2)2×=3,
∴三棱锥V—ABC的表面积为
3S△VBC+S△ABC=3+3=3(+).
点V在底面ABC上的射影为H,则A,H,D三点共线,VH即为三棱锥V—ABC的高,
VH==
==2,
∴VV—ABC=S△ABC·VH
=×3×2=6,
所以正三棱锥的体积是6.
12.解 由题意知,圆锥的轴截面为正三角形,如图所示为圆锥的轴截面.
根据切线性质知,当球在容器内时,水深为3r,水面的半径为r,则容器内水的体积为V=V圆锥-V球=π·(r)2·3r-πr3=πr3,而将球取出后,设容器内水的深度为h,则水面圆的半径为h,从而容器内水的体积是V′=π·(h)2·h=πh3,
由V=V′,得h=r.
即容器中水的深度为r.
13.解 设正方体的棱长为a.如图所示.
①正方体的内切球球心是正方体的中心,切点是正方体六个面的中心,经过四个切点及球心作截面,所以有2r1=a,r1=,
所以S1=4πr=πa2.
②球与正方体的各棱的切点在每条棱的中点,过球心作正方体的对角面得截面,
2r2=a,
r2=a,所以S2=4πr=2πa2.
③正方体的各个顶点在球面上,过球心作正方体的对角面得截面,所以有2r3=a,
r3=a,所以S3=4πr=3πa2.
综上可得S1∶S2∶S3=1∶2∶3.