必修1高考题单元试卷:第3章
函数的应用
一、选择题(共12小题)
1.设f(x)=,则f(f(﹣2))=( )
A.﹣1
B.
C.
D.
2.已知函数f(x)=x(lnx﹣ax)有两个极值点,则实数a的取值范围是( )
A.(﹣∞,0)
B.(0,)
C.(0,1)
D.(0,+∞)
3.已知函数f(x)=(a∈R),若f[f(﹣1)]=1,则a=( )
A.
B.
C.1
D.2
4.已知函数f(x)满足f(x)=x2﹣2(a+2)x+a2,g(x)=﹣x2+2(a﹣2)x﹣a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max(p,q)表示p,q中的较大值,min(p,q)表示p,q中的较小值),记H1(x)的最小值为A,H2(x)的最大值为B,则A﹣B=( )
A.a2﹣2a﹣16
B.a2+2a﹣16
C.﹣16
D.16
5.已知符号函数sgnx=,f(x)是R上的增函数,g(x)=f(x)﹣f(ax)(a>1),则( )
A.sgn[g(x)]=sgnx
B.sgn[g(x)]=﹣sgnx
C.sgn[g(x)]=sgn[f(x)]
D.sgn[g(x)]=﹣sgn[f(x)]
6.已知函数f(x)=,且f(a)=﹣3,则f(6﹣a)=( )
A.﹣
B.﹣
C.﹣
D.﹣
7.设函数f(x)=,则满足f(f(a))=2f(a)的a的取值范围是( )
A.[,1]
B.[0,1]
C.[,+∞)
D.[1,+∞)
8.设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk(a98)|,k=1,2,3,则( )
A.I1<I2<I3
B.I2<I1<I3
C.I1<I3<I2
D.I3<I2<I1
9.已知f(x)为偶函数,当x≥0时,f(x)=,则不等式f(x﹣1)≤的解集为( )
A.[,]∪[,]
B.[﹣,﹣]∪[,]
C.[,]∪[,]
D.[﹣,﹣]∪[,]
10.已知函数f(x)=,且g(x)=f(x)﹣mx﹣m在(﹣1,1]内有且仅有两个不同的零点,则实数m的取值范围是( )
A.(﹣,﹣2]∪(0,]
B.(﹣,﹣2]∪(0,]
C.(﹣,﹣2]∪(0,]
D.(﹣,﹣2]∪(0,]
11.设函数f(x)=(a∈R,e为自然对数的底数),若曲线y=sinx上存在点(x0,y0)使得f(f(y0))=y0,则a的取值范围是( )
A.[1,e]
B.[e﹣1﹣1,1]
C.[1,e+1]
D.[e﹣1﹣1,e+1]
12.设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为( )
A.[﹣1,2]
B.[﹣1,0]
C.[1,2]
D.[0,2]
二、填空题(共3小题)
13.设a,b>0,a+b=5,则+的最大值为
.
14.设f(x)=,若f(2)=4,则a的取值范围为
.
15.设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为
.
三、解答题(共8小题)
16.如图,O,P,Q三地有直道相通,OP=3千米,PQ=4千米,OQ=5千米,现甲、乙两警员同时从O地出发匀速前往Q地,经过t小时,他们之间的距离为f(t)(单位:千米).甲的路线是OQ,速度为5千米/小时,乙的路线是OPQ,速度为8千米/小时,乙到达Q地后在原地等待.设t=t1时乙到达P地,t=t2时乙到达Q地.
(1)求t1与f(t1)的值;
(2)已知警员的对讲机的有效通话距离是3千米,当t1≤t≤t2时,求f(t)的表达式,并判断f(t)在[t1,t2]上的最大值是否超过3?说明理由.
17.如图,某校有一块形如直角三角形ABC的空地,其中∠B为直角,AB长40米,BC长50米,现欲在此空地上建造一间健身房,其占地形状为矩形,且B为矩形的一个顶点,求该健身房的最大占地面积.
18.甲厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每小时可获得的利润是100(5x+1﹣)元.
(1)要使生产该产品2小时获得的利润不低于3000元,求x的取值范围;
(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.
19.甲厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每一小时可获得的利润是100(5x+1﹣)元.
(1)求证:生产a千克该产品所获得的利润为100a(5+)元;
(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.
20.某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.
(1)求a,b的值;
(2)设公路l与曲线C相切于P点,P的横坐标为t.
①请写出公路l长度的函数解析式f(t),并写出其定义域;
②当t为何值时,公路l的长度最短?求出最短长度.
21.在平面直角坐标系xOy中,将从点M出发沿纵、横方向到达点N的任一路径称为M到N的一条“L路径”.如图所示的路径MM1M2M3N与路径MN1N都是M到N的“L路径”.某地有三个新建居民区,分别位于平面xOy内三点A(3,20),B(﹣10,0),C(14,0)处.现计划在x轴上方区域(包含x轴)内的某一点P处修建一个文化中心.
(I)写出点P到居民区A的“L路径”长度最小值的表达式(不要求证明);
(II)若以原点O为圆心,半径为1的圆的内部是保护区,“L路径”不能进入保护区,请确定点P的位置,使其到三个居民区的“L路径”长度之和最小.
22.对于定义域为R的函数g(x),若存在正常数T,使得cosg(x)是以T为周期的函数,则称g(x)为余弦周期函数,且称T为其余弦周期.已知f(x)是以T为余弦周期的余弦周期函数,其值域为R.设f(x)单调递增,f(0)=0,f(T)=4π.
(1)验证g(x)=x+sin是以6π为周期的余弦周期函数;
(2)设a<b,证明对任意c∈[f(a),f(b)],存在x0∈[a,b],使得f(x0)=c;
(3)证明:“u0为方程cosf(x)=1在[0,T]上的解,”的充要条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”,并证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T).
23.某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).
(Ⅰ)将V表示成r的函数V(r),并求该函数的定义域;
(Ⅱ)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.
人教A版必修1高考题单元试卷:第3章
函数的应用(02)
参考答案与试题解析
一、选择题(共12小题)
1.设f(x)=,则f(f(﹣2))=( )
A.﹣1
B.
C.
D.
【分析】利用分段函数的性质求解.
【解答】解:∵,
∴f(﹣2)=2﹣2=,
f(f(﹣2))=f()=1﹣=.
故选:C.
【点评】本题考查函数值的求法,是中档题,解题时要认真审题,注意分段函数的性质的合理运用.
2.已知函数f(x)=x(lnx﹣ax)有两个极值点,则实数a的取值范围是( )
A.(﹣∞,0)
B.(0,)
C.(0,1)
D.(0,+∞)
【分析】先求导函数,函数f(x)=x(lnx﹣ax)有两个极值点,等价于f′(x)=lnx﹣2ax+1有两个零点,等价于函数y=lnx与y=2ax﹣1的图象由两个交点,在同一个坐标系中作出它们的图象.由图可求得实数a的取值范围.
【解答】解:函数f(x)=x(lnx﹣ax),
则f′(x)=lnx﹣ax+x(﹣a)=lnx﹣2ax+1,
令f′(x)=lnx﹣2ax+1=0得lnx=2ax﹣1,
函数f(x)=x(lnx﹣ax)有两个极值点,
等价于f′(x)=lnx﹣2ax+1有两个零点,
等价于函数y=lnx与y=2ax﹣1的图象有两个交点,
在同一个坐标系中作出它们的图象(如图)
当a=时,直线y=2ax﹣1与y=lnx的图象相切,
由图可知,当0<a<时,
y=lnx与y=2ax﹣1的图象有两个交点.
则实数a的取值范围是(0,).
简解:函数f(x)=x(lnx﹣ax),
则f′(x)=lnx﹣ax+x(﹣a)=lnx﹣2ax+1,
令f′(x)=lnx﹣2ax+1=0得lnx=2ax﹣1,
可得2a=有两个不同的解,
设g(x)=,则g′(x)=,
当x>1时,g(x)递减,0<x<1时,g(x)递增,
可得g(1)取得极大值1,
作出y=g(x)的图象,可得0<2a<1,
即0<a<,
故选:B.
【点评】本题主要考查函数的零点以及数形结合方法,数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.
3.已知函数f(x)=(a∈R),若f[f(﹣1)]=1,则a=( )
A.
B.
C.1
D.2
【分析】根据条件代入计算即可.
【解答】解:∵f[f(﹣1)]=1,
∴f[f(﹣1)]=f(2﹣(﹣1))=f(2)=a?22=4a=1
∴.
故选:A.
【点评】本题主要考查了求函数值的问题,关键是分清需要代入到那一个解析式中,属于基础题.
4.已知函数f(x)满足f(x)=x2﹣2(a+2)x+a2,g(x)=﹣x2+2(a﹣2)x﹣a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max(p,q)表示p,q中的较大值,min(p,q)表示p,q中的较小值),记H1(x)的最小值为A,H2(x)的最大值为B,则A﹣B=( )
A.a2﹣2a﹣16
B.a2+2a﹣16
C.﹣16
D.16
【分析】本选择题宜采用特殊值法.取a=﹣2,则f(x)=x2+4,g(x)=﹣x2﹣8x+4.画出它们的图象,如图所示.从而得出H1(x)的最小值为两图象右边交点的纵坐标,H2(x)的最大值为两图象左边交点的纵坐标,再将两函数图象对应的方程组成方程组,求解即得.
【解答】解:取a=﹣2,则f(x)=x2+4,g(x)=﹣x2﹣8x+4.画出它们的图象,如图所示.
则H1(x)的最小值为两图象右边交点的纵坐标,H2(x)的最大值为两图象左边交点的纵坐标,
由
解得或,
∴A=4,B=20,A﹣B=﹣16.
故选:C.
【点评】本题主要考查了二次函数的图象与性质、函数最值的应用等,考查了数形结合的思想,属于中档题.
5.已知符号函数sgnx=,f(x)是R上的增函数,g(x)=f(x)﹣f(ax)(a>1),则( )
A.sgn[g(x)]=sgnx
B.sgn[g(x)]=﹣sgnx
C.sgn[g(x)]=sgn[f(x)]
D.sgn[g(x)]=﹣sgn[f(x)]
【分析】直接利用特殊法,设出函数f(x),以及a的值,判断选项即可.
【解答】解:由于本题是选择题,可以采用特殊法,符号函数sgnx=,f(x)是R上的增函数,g(x)=f(x)﹣f(ax)(a>1),
不妨令f(x)=x,a=2,
则g(x)=f(x)﹣f(ax)=﹣x,
sgn[g(x)]=﹣sgnx.所以A不正确,B正确,
sgn[f(x)]=sgnx,C不正确;D正确;
对于D,令f(x)=x+1,a=2,
则g(x)=f(x)﹣f(ax)=﹣x,
sgn[f(x)]=sgn(x+1)=;
sgn[g(x)]=sgn(﹣x)=,
﹣sgn[f(x)]=﹣sgn(x+1)=;所以D不正确;
故选:B.
【点评】本题考查函数表达式的比较,选取特殊值法是解决本题的关键,注意解题方法的积累,属于中档题.
6.已知函数f(x)=,且f(a)=﹣3,则f(6﹣a)=( )
A.﹣
B.﹣
C.﹣
D.﹣
【分析】利用分段函数,求出a,再求f(6﹣a).
【解答】解:由题意,a≤1时,2α﹣1﹣2=﹣3,无解;
a>1时,﹣log2(a+1)=﹣3,∴α=7,
∴f(6﹣a)=f(﹣1)=2﹣1﹣1﹣2=﹣.
故选:A.
【点评】本题考查分段函数,考查学生的计算能力,比较基础.
7.设函数f(x)=,则满足f(f(a))=2f(a)的a的取值范围是( )
A.[,1]
B.[0,1]
C.[,+∞)
D.[1,+∞)
【分析】令f(a)=t,则f(t)=2t,讨论t<1,运用导数判断单调性,进而得到方程无解,讨论t≥1时,以及a<1,a≥1,由分段函数的解析式,解不等式即可得到所求范围.
【解答】解:令f(a)=t,
则f(t)=2t,
当t<1时,3t﹣1=2t,
由g(t)=3t﹣1﹣2t的导数为g′(t)=3﹣2tln2,
在t<1时,g′(t)>0,g(t)在(﹣∞,1)递增,
即有g(t)<g(1)=0,
则方程3t﹣1=2t无解;
当t≥1时,2t=2t成立,
由f(a)≥1,即3a﹣1≥1,解得a≥,且a<1;
或a≥1,2a≥1解得a≥0,即为a≥1.
综上可得a的范围是a≥.
故选:C.
【点评】本题考查分段函数的运用,主要考查函数的单调性的运用,运用分类讨论的思想方法是解题的关键.
8.设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk(a98)|,k=1,2,3,则( )
A.I1<I2<I3
B.I2<I1<I3
C.I1<I3<I2
D.I3<I2<I1
【分析】根据记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk(a98)|,分别求出I1,I2,I3与1的关系,继而得到答案
【解答】解:由,故==1,
由,故×=×<1,
+
=,
故I2<I1<I3,
故选:B.
【点评】本题主要考查了函数的性质,关键是求出这三个数与1的关系,属于难题.
9.已知f(x)为偶函数,当x≥0时,f(x)=,则不等式f(x﹣1)≤的解集为( )
A.[,]∪[,]
B.[﹣,﹣]∪[,]
C.[,]∪[,]
D.[﹣,﹣]∪[,]
【分析】先求出当x≥0时,不等式f(x)≤的解,然后利用函数的奇偶性求出整个定义域上f(x)≤的解,即可得到结论.
【解答】解:当x∈[0,],由f(x)=,即cosπx=,
则πx=,即x=,
当x>时,由f(x)=,得2x﹣1=,
解得x=,
则当x≥0时,不等式f(x)≤的解为≤x≤,(如图)
则由f(x)为偶函数,
∴当x<0时,不等式f(x)≤的解为﹣≤x≤﹣,
即不等式f(x)≤的解为≤x≤或﹣≤x≤﹣,
则由≤x﹣1≤或﹣≤x﹣1≤﹣,
解得≤x≤或≤x≤,
即不等式f(x﹣1)≤的解集为{x|≤x≤或≤x≤},
故选:A.
【点评】本题主要考查不等式的解法,利用分段函数的不等式求出x≥0时,不等式f(x)≤的解是解决本题的关键.
10.已知函数f(x)=,且g(x)=f(x)﹣mx﹣m在(﹣1,1]内有且仅有两个不同的零点,则实数m的取值范围是( )
A.(﹣,﹣2]∪(0,]
B.(﹣,﹣2]∪(0,]
C.(﹣,﹣2]∪(0,]
D.(﹣,﹣2]∪(0,]
【分析】由g(x)=f(x)﹣mx﹣m=0,即f(x)=m(x+1),作出两个函数的图象,利用数形结合即可得到结论.
【解答】解:由g(x)=f(x)﹣mx﹣m=0,即f(x)=m(x+1),
分别作出函数f(x)和y=h(x)=m(x+1)的图象如图:
由图象可知f(1)=1,h(x)表示过定点A(﹣1,0)的直线,
当h(x)过(1,1)时,m=此时两个函数有两个交点,此时满足条件的m的取值范围是0<m≤,
当h(x)过(0,﹣2)时,h(0)=﹣2,解得m=﹣2,此时两个函数有两个交点,
当h(x)与f(x)相切时,两个函数只有一个交点,
此时,
即m(x+1)2+3(x+1)﹣1=0,
当m=0时,x=,只有1解,
当m≠0,由△=9+4m=0得m=﹣,此时直线和f(x)相切,
∴要使函数有两个零点,
则﹣<m≤﹣2或0<m≤,
故选:A.
【点评】本题主要考查函数零点的应用,利用数形结合是解决此类问题的基本方法.
11.设函数f(x)=(a∈R,e为自然对数的底数),若曲线y=sinx上存在点(x0,y0)使得f(f(y0))=y0,则a的取值范围是( )
A.[1,e]
B.[e﹣1﹣1,1]
C.[1,e+1]
D.[e﹣1﹣1,e+1]
【分析】考查题设中的条件,函数f(f(y0))的解析式不易得出,直接求最值有困难,考察四个选项,发现有两个特值区分开了四个选项,0出现在了B,D两个选项的范围中,e+1出现在了C,D两个选项所给的范围中,故可通过验证参数为0与e+1时是否符合题意判断出正确选项
【解答】解:曲线y=sinx上存在点(x0,y0)使得f(f(y0))=y0,则y0∈[﹣1,1]
考查四个选项,B,D两个选项中参数值都可取0,C,D两个选项中参数都可取e+1,A,B,C,D四个选项参数都可取1,由此可先验证参数为0与e+1时是否符合题意,即可得出正确选项
当a=0时,,此是一个增函数,且函数值恒非负,故只研究y0∈[0,1]时f(f(y0))=y0是否成立
由于是一个增函数,可得出f(y0)≥f(0)=1,而f(1)=>1,故a=0不合题意,由此知B,D两个选项不正确
当a=e+1时,此函数是一个增函数,=0,而f(0)没有意义,故a=e+1不合题意,故C,D两个选项不正确
综上讨论知,可确定B,C,D三个选项不正确,故A选项正确
故选:A.
【点评】本题是一个函数综合题,解题的关键与切入点是观察出四个选项中同与不同点,判断出参数0与e+1是两个特殊值,结合排除法做题的技巧及函数的性质判断出正确选项,本题考查了转化的思想,观察探究的能力,属于考查能力的综合题,易因为找不到入手处致使无法解答失分,易错
12.设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为( )
A.[﹣1,2]
B.[﹣1,0]
C.[1,2]
D.[0,2]
【分析】当a<0时,显然f(0)不是f(x)的最小值,当a≥0时,解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,问题解决.
【解答】解;当a<0时,显然f(0)不是f(x)的最小值,
当a≥0时,f(0)=a2,
由题意得:a2≤x++a,
解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,
∴0≤a≤2,
故选:D.
【点评】本题考察了分段函数的问题,基本不等式的应用,渗透了分类讨论思想,是一道基础题.
二、填空题(共3小题)
13.设a,b>0,a+b=5,则+的最大值为 3 .
【分析】利用柯西不等式,即可求出的最大值.
【解答】解:由题意,()2≤(1+1)(a+1+b+3)=18,
∴的最大值为3,
故答案为:3.
【点评】本题考查函数的最值,考查柯西不等式的运用,正确运用柯西不等式是关键.
14.设f(x)=,若f(2)=4,则a的取值范围为 (﹣∞,2] .
【分析】可对a进行讨论,当a>2时,当a=2时,当a<2时,将a代入相对应的函数解析式,从而求出a的范围.
【解答】解:当a>2时,f(2)=2≠4,不合题意;
当a=2时,f(2)=22=4,符合题意;
当a<2时,f(2)=22=4,符合题意;
∴a≤2,
故答案为:(﹣∞,2].
【点评】本题考察了分段函数的应用,渗透了分类讨论思想,本题是一道基础题.
15.设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为 (﹣∞,2] .
【分析】分别由f(0)=a,x≥2,a≤x+综合得出a的取值范围.
【解答】解:当x=0时,f(0)=a,
由题意得:a≤x+,
又∵x+≥2=2,
∴a≤2,
故答案为:(﹣∞,2].
【点评】本题考察了分段函数的应用,基本不等式的性质,是一道基础题.
三、解答题(共8小题)
16.如图,O,P,Q三地有直道相通,OP=3千米,PQ=4千米,OQ=5千米,现甲、乙两警员同时从O地出发匀速前往Q地,经过t小时,他们之间的距离为f(t)(单位:千米).甲的路线是OQ,速度为5千米/小时,乙的路线是OPQ,速度为8千米/小时,乙到达Q地后在原地等待.设t=t1时乙到达P地,t=t2时乙到达Q地.
(1)求t1与f(t1)的值;
(2)已知警员的对讲机的有效通话距离是3千米,当t1≤t≤t2时,求f(t)的表达式,并判断f(t)在[t1,t2]上的最大值是否超过3?说明理由.
【分析】(1)用OP长度除以乙的速度即可求得t1=,当乙到达P点时,可设甲到达A点,连接AP,放在△AOP中根据余弦定理即可求得AP,也就得出f(t1);
(2)求出t2=,设t,且t小时后甲到达B地,而乙到达C地,并连接BC,能够用t表示出BQ,CQ,并且知道cos,这样根据余弦定理即可求出BC,即f(t),然后求该函数的最大值,看是否超过3即可.
【解答】解:(1)根据条件知,设此时甲到达A点,并连接AP,如图所示,则OA=;
∴在△OAP中由余弦定理得,f(t1)=AP==(千米);
(2)可以求得,设t小时后,且,甲到达了B点,乙到达了C点,如图所示:
则BQ=5﹣5t,CQ=7﹣8t;
∴在△BCQ中由余弦定理得,f(t)=BC==;
即f(t)=,;
设g(t)=25t2﹣42t+18,,g(t)的对称轴为t=;
且;
即g(t)的最大值为,则此时f(t)取最大值;
即f(t)在[t1,t2]上的最大值不超过3.
【点评】考查余弦定理的应用,以及二次函数在闭区间上最值的求法.
17.如图,某校有一块形如直角三角形ABC的空地,其中∠B为直角,AB长40米,BC长50米,现欲在此空地上建造一间健身房,其占地形状为矩形,且B为矩形的一个顶点,求该健身房的最大占地面积.
【分析】设出矩形的边FP的边长,利用三角形相似求出矩形的宽,表示出矩形面积,利用二次函数的最值求解即可.
【解答】解:如图,设矩形为EBFP,FP长为x米,其中0<x<40,
健身房占地面积为y平方米.因为△CFP∽△CBA,
以,,求得BF=50﹣,
从而y=BF?FP=(50﹣)?x
=﹣
=﹣
≤500.
当且仅当x=20时,等号成立.
答:该健身房的最大占地面积为500平方米.
【点评】本题考查函数的实际应用,表示出函数的表达式是解题的关键,考查分析问题解决问题的能力.
18.甲厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每小时可获得的利润是100(5x+1﹣)元.
(1)要使生产该产品2小时获得的利润不低于3000元,求x的取值范围;
(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.
【分析】(1)求出生产该产品2小时获得的利润,建立不等式,即可求x的取值范围;
(2)确定生产900千克该产品获得的利润函数,利用配方法,可求最大利润.
【解答】解:(1)生产该产品2小时获得的利润为100(5x+1﹣)×2=200(5x+1﹣)
根据题意,200(5x+1﹣)≥3000,即5x2﹣14x﹣3≥0
∴x≥3或x≤﹣
∵1≤x≤10,∴3≤x≤10;
(2)设利润为
y元,则生产900千克该产品获得的利润为y=100(5x+1﹣)×
=90000()=9×104[+]
∵1≤x≤10,∴x=6时,取得最大利润为=457500元
故甲厂应以6千克/小时的速度生产,可获得最大利润为457500元.
【点评】本题考查函数模型的建立,考查解不等式,考查函数的最值,确定函数的模型是关键.
19.甲厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每一小时可获得的利润是100(5x+1﹣)元.
(1)求证:生产a千克该产品所获得的利润为100a(5+)元;
(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.
【分析】(1)由题意可得生产a千克该产品所用的时间是小时,由于每一小时可获得的利润是100(5x+1﹣)元,即可得到生产a千克该产品所获得的利润;
(2)利用(1)的结论可得生产1千克所获得的利润为90000(5+),1≤x≤10.进而得到生产900千克该产品获得的利润,利用二次函数的单调性即可得出.
【解答】解:(1)生产a千克该产品所用的时间是小时,
∵每一小时可获得的利润是100(5x+1﹣)元,∴获得的利润为100(5x+1﹣)×元.
因此生产a千克该产品所获得的利润为100a(5+)元.
(2)生产900千克该产品获得的利润为90000(5+),1≤x≤10.
设f(x)=,1≤x≤10.
则f(x)=,当且仅当x=6取得最大值.
故获得最大利润为=457500元.
因此甲厂应以6千克/小时的速度生产,可获得最大利润457500元.
【点评】正确理解题意和熟练掌握二次函数的单调性是解题的关键.
20.某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.
(1)求a,b的值;
(2)设公路l与曲线C相切于P点,P的横坐标为t.
①请写出公路l长度的函数解析式f(t),并写出其定义域;
②当t为何值时,公路l的长度最短?求出最短长度.
【分析】(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,建立方程组,即可求a,b的值;
(2)①求出切线l的方程,可得A,B的坐标,即可写出公路l长度的函数解析式f(t),并写出其定义域;
②设g(t)=,利用导数,确定单调性,即可求出当t为何值时,公路l的长度最短,并求出最短长度.
【解答】解:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),
将其分别代入y=,得,
解得,
(2)①由(1)y=(5≤x≤20),P(t,),
∴y′=﹣,
∴切线l的方程为y﹣=﹣(x﹣t)
设在点P处的切线l交x,y轴分别于A,B点,则A(,0),B(0,),
∴f(t)==,t∈[5,20];
②设g(t)=,则g′(t)=2t﹣=0,解得t=10,
t∈(5,10)时,g′(t)<0,g(t)是减函数;t∈(10,20)时,g′(t)>0,g(t)是增函数,
从而t=10时,函数g(t)有极小值也是最小值,
∴g(t)min=300,
∴f(t)min=15,
答:t=10时,公路l的长度最短,最短长度为15千米.
【点评】本题考查利用数学知识解决实际问题,考查导数知识的综合运用,确定函数关系,正确求导是关键.
21.在平面直角坐标系xOy中,将从点M出发沿纵、横方向到达点N的任一路径称为M到N的一条“L路径”.如图所示的路径MM1M2M3N与路径MN1N都是M到N的“L路径”.某地有三个新建居民区,分别位于平面xOy内三点A(3,20),B(﹣10,0),C(14,0)处.现计划在x轴上方区域(包含x轴)内的某一点P处修建一个文化中心.
(I)写出点P到居民区A的“L路径”长度最小值的表达式(不要求证明);
(II)若以原点O为圆心,半径为1的圆的内部是保护区,“L路径”不能进入保护区,请确定点P的位置,使其到三个居民区的“L路径”长度之和最小.
【分析】(I)根据“L路径”的定义,可得点P到居民区A的“L路径”长度最小值;
(II)由题意知,点P到三个居民区的“L路径”长度之和的最小值为点P到三个居民区的“L路径”长度最小值之和(记为d)的最小值,分类讨论,利用绝对值的几何意义,即可求得点P的坐标.
【解答】解:设点P的坐标为(x,y),则
(I)点P到居民区A的“L路径”长度最小值为|x﹣3|+|y﹣20|,y∈[0,+∞);
(II)由题意知,点P到三个居民区的“L路径”长度之和的最小值为点P到三个居民区的“L路径”长度最小值之和(记为d)的最小值
①当y≥1时,d=|x+10|+|x﹣14|+|x﹣3|+2|y|+|y﹣20|
∵d1(x)=|x+10|+|x﹣14|+|x﹣3|≥|x+10|+|x﹣14|≥24
∴当且仅当x=3时,d1(x)=|x+10|+|x﹣14|+|x﹣3|的最小值为24
∵d2(y)=2|y|+|y﹣20|≥21
∴当且仅当y=1时,d2(y)=2|y|+|y﹣20|的最小值为21
∴点P的坐标为(3,1)时,点P到三个居民区的“L路径”长度之和的最小,且最小值为45;
②当0≤y≤1时,由于“L路径”不能进入保护区,∴d=|x+10|+|x﹣14|+|x﹣3|+1+|1﹣y|+|y|+|y﹣20|
此时d1(x)=|x+10|+|x﹣14|+|x﹣3|,d2(y)=1+|1﹣y|+|y|+|y﹣20|=22﹣y≥21
由①知d1(x)=|x+10|+|x﹣14|+|x﹣3|≥24,∴d1(x)+d2(y)≥45,当且仅当x=3,y=1时等号成立
综上所述,在点P(3,1)处修建文化中心,可使该文化中心到三个居民区的“L路径”长度之和最小.
【点评】本题考查新定义,考查分类讨论的数学思想,考查学生建模的能力,同时考查学生的理解能力,属于难题.
22.对于定义域为R的函数g(x),若存在正常数T,使得cosg(x)是以T为周期的函数,则称g(x)为余弦周期函数,且称T为其余弦周期.已知f(x)是以T为余弦周期的余弦周期函数,其值域为R.设f(x)单调递增,f(0)=0,f(T)=4π.
(1)验证g(x)=x+sin是以6π为周期的余弦周期函数;
(2)设a<b,证明对任意c∈[f(a),f(b)],存在x0∈[a,b],使得f(x0)=c;
(3)证明:“u0为方程cosf(x)=1在[0,T]上的解,”的充要条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”,并证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T).
【分析】(1)根据余弦函数的周期定义,判断cosg(x+6π)是否等于cosg(x)即可;
(2)根据f(x)的值域为R,便可得到存在x0,使得f(x0)=c,而根据f(x)在R上单调递增即可说明x0∈[a,b],从而完成证明;
(3)只需证明u0+T为方程cosf(x)=1在区间[T,2T]上的解得出u0为方程cosf(x)=1在[0,T]上的解,是否为方程的解,带入方程,使方程成立便是方程的解.证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T),可讨论x=0,x=T,x∈(0,T)三种情况:x=0时是显然成立的;x=T时,可得出cosf(2T)=1,从而得到f(2T)=2k1π,k1∈Z,根据f(x)单调递增便能得到k1>2,然后根据f(x)的单调性及方程cosf(x)=1在[T,2T]和它在[0,T]上解的个数的情况说明k1=3,和k1≥5是不存在的,而k1=4时结论成立,这便说明x=T时结论成立;而对于x∈(0,T)时,通过考查cosf(x)=c的解得到f(x+T)=f(x)+f(T),综合以上的三种情况,最后得出结论即可.
【解答】解:(1)g(x)=x+sin;
∴==cosg(x)
∴g(x)是以6π为周期的余弦周期函数;
(2)∵f(x)的值域为R;
∴存在x0,使f(x0)=c;
又c∈[f(a),f(b)];
∴f(a)≤f(x0)≤f(b),而f(x)为增函数;
∴a≤x0≤b;
即存在x0∈[a,b],使f(x0)=c;
(3)证明:若u0+T为方程cosf(x)=1在区间[T,2T]上的解;
则:cosf(u0+T)=1,T≤u0+T≤2T;
∴cosf(u0)=1,且0≤u0≤T;
∴u0为方程cosf(x)=1在[0,T]上的解;
∴“u0为方程cosf(x)=1在[0,T]上得解”的充分条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”;下面证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T):
①当x=0时,f(0)=0,∴显然成立;
②当x=T时,cosf(2T)=cosf(T)=1;
∴f(2T)=2k1π,(k1∈Z),f(T)=4π,且2k1π>4π,∴k1>2;
1)若k1=3,f(2T)=6π,由(2)知存在x0∈(0,T),使f(x0)=2π;
cosf(x0+T)=cosf(x0)=1?f(x0+T)=2k2π,k2∈Z;
∴f(T)<f(x0+T)<f(2T);
∴4π<2k2π<6π;
∴2<k2<3,无解;
2)若k1≥5,f(2T)≥10π,则存在T<x1<x2<2T,使得f(x1)=6π,f(x2)=8π;
则T,x1,x2,2T为cosf(x)=1在[T,2T]上的4个解;
但方程cosf(x)=1在[0,2T]上只有f(x)=0,2π,4π,3个解,矛盾;
3)当k1=4时,f(2T)=8π=f(T)+f(T),结论成立;
③当x∈(0,T)时,f(x)∈(0,4π),考查方程cosf(x)=c在(0,T)上的解;
设其解为f(x1),f(x2),…,f(xn),(x1<x2<…<xn);
则f(x1+T),f(x2+T),…,f(xn+T)为方程cosf(x)=c在(T,2T)上的解;
又f(x+T)∈(4π,8π);
而f(x1)+4π,f(x2)+4π,…,f(xn)+4π∈(4π,8π)为方程cosf(x)=c在(T,2T)上的解;
∴f(xi+T)=f(xi)+4π=f(xi)+f(T);
∴综上对任意x∈[0,T],都有f(x+T)=f(x)+f(T).
【点评】考查对余弦周期函数定义的理解,充分条件的概念,方程的解的概念,知道由cosf(x)=1能得出f(x)=2kx,k∈Z,以及构造方程解题的方法,在证明最后一问时能运用第二问的结论.
23.某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).
(Ⅰ)将V表示成r的函数V(r),并求该函数的定义域;
(Ⅱ)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.
【分析】(I)由已知中侧面积和底面积的单位建造成本,结合圆柱体的侧面积及底面积公式,根据该蓄水池的总建造成本为12000π元,构造方程整理后,可将V表示成r的函数,进而根据实际中半径与高为正数,得到函数的定义域;
(Ⅱ)根据(I)中函数的定义值及解析式,利用导数法,可确定函数的单调性,根据单调性,可得函数的最大值点.
【解答】解:(Ⅰ)∵蓄水池的侧面积的建造成本为200?πrh元,
底面积成本为160πr2元,
∴蓄水池的总建造成本为200?πrh+160πr2元
即200?πrh+160πr2=12000π
∴h=(300﹣4r2)
∴V(r)=πr2h=πr2?(300﹣4r2)=(300r﹣4r3)
又由r>0,h>0可得0<r<5
故函数V(r)的定义域为(0,5)
(Ⅱ)由(Ⅰ)中V(r)=(300r﹣4r3),(0<r<5)
可得V′(r)=(300﹣12r2),(0<r<5)
∵令V′(r)=(300﹣12r2)=0,则r=5
∴当r∈(0,5)时,V′(r)>0,函数V(r)为增函数
当r∈(5,5)时,V′(r)<0,函数V(r)为减函数
且当r=5,h=8时该蓄水池的体积最大
【点评】本题考查的知识点是函数模型的应用,其中(Ⅰ)的关键是根据已知,求出函数的解析式及定义域,(Ⅱ)的关键是利用导数分析出函数的单调性及最值点.
声明:试题解析著作权属所有,未经书面同意,不得复制发布
日期:2020/9/22
17:40:01;用户:丰翼中学;邮箱:fy11@xyh.com;学号:30342188
第1页(共1页)