2011年高二数学全案:2.2《等差数列》(新人教A版必修5)

文档属性

名称 2011年高二数学全案:2.2《等差数列》(新人教A版必修5)
格式 zip
文件大小 835.1KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2011-09-13 20:09:58

文档简介

2.2.1等差数列学案
一、预习问题:
1、等差数列的定义:一般地,如果一个数列从 起,每一项与它的前一项的差等于同一个 ,那么这个数列就叫等差数列,这个常数叫做等差数列的 , 通常用字母表示。
2、等差中项:若三个数组成等差数列,那么A叫做与的 ,
即 或 。
3、等差数列的单调性:等差数列的公差 时,数列为递增数列; 时,数列为递减数列; 时,数列为常数列;等差数列不可能是 。
4、等差数列的通项公式: 。
5、判断正误:
①1,2,3,4,5是等差数列; ( )
②1,1,2,3,4,5是等差数列; ( )
③数列6,4,2,0是公差为2的等差数列; ( )
④数列是公差为的等差数列; ( )
⑤数列是等差数列; ( )
⑥若,则成等差数列; ( )
⑦若,则数列成等差数列; ( )
⑧等差数列是相邻两项中后项与前项之差等于非零常数的数列; ( )
⑨等差数列的公差是该数列中任何相邻两项的差。 ( )
6、思考:如何证明一个数列是等差数列。
二、实战操作:
例1、(1)求等差数列8,5,2,…的第20项.
(2)是不是等差数列中的项?如果是,是第几项?
(3)已知数列的公差则
例2、已知数列的通项公式为,其中为常数,那么这个数列一定是等差数列吗?
例3、已知5个数成等差数列,它们的和为5,平方和为求这5个数。2.2 等差数列
(一)教学目标
1.知识与技能:通过实例,理解等差数列的概念;探索并掌握等差数列的通项公式;能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题;体会等差数列与一次函数的关系。
2. 过程与方法:让学生对日常生活中实际问题分析,引导学生通过观察,推导,归纳抽象出等差数列的概念;由学生建立等差数列模型用相关知识解决一些简单的问题,进行等差数列通项公式应用的实践操作并在操作过程中,通过类比函数概念、性质、表达式得到对等差数列相应问题的研究。
3.情态与价值:培养学生观察、归纳的能力,培养学生的应用意识。
(二)教学重、难点
重点:理解等差数列的概念及其性质,探索并掌握等差数列的通项公式;会用公式解决一些简单的问题,体会等差数列与一次函数之间的联系。
难点:概括通项公式推导过程中体现出的数学思想方法。
(三)学法与教学用具
学法:引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列的特点,推导出等差数列的通项公式;可以用多种方法对等差数列的通项公式进行推导。
教学用具:投影仪
(四)教学设想
[创设情景]
上节课我们学习了数列。在日常生活中,人口增长、教育贷款、存款利息等等这些大家以后会接触得比较多的实际计算问题,都需要用到有关数列的知识来解决。今天我们就先学习一类特殊的数列。
[探索研究]
由学生观察分析并得出答案:
(放投影片)在现实生活中,我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,____,____,____,____,……
2000年,在澳大利亚悉尼举行的奥运会上,女子举重被正式列为比赛项目。该项目共设置了7个级别。其中较轻的4个级别体重组成数列(单位:kg):48,53,58,63。
水库的管理人员为了保证优质鱼类有良好的生活环境,用定期放水清理水库的杂鱼。如果一个水库的水位为18cm,自然放水每天水位降低2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,15.5,13,10.5,8,5.5
我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。按照单利计算本利和的公式是:本利和=本金×(1+利率×寸期).例如,按活期存入10 000元钱,年利率是0.72%。那么按照单利,5年内各年末的本利和分别是:
时间 年初本金(元) 年末本利和(元)
第1年 10 000 10 072
第2年 10 000 10 144
第3年 10 000 10 216
第4年 10 000 10 288
第5年 10 000 10 360
各年末的本利和(单位:元)组成了数列:10 072,10 144,10 216, 10 288,10 360。
思考:同学们观察一下上面的这四个数列:0,5,10,15,20,…… ①
48,53,58,63 ②
18,15.5,13,10.5,8,5.5 ③
10 072,10 144,10 216, 10 288,10 360 ④
看这些数列有什么共同特点呢?
(由学生讨论、分析)
引导学生观察相邻两项间的关系,得到:
对于数列①,从第2项起,每一项与前一项的差都等于 5 ;
对于数列②,从第2项起,每一项与前一项的差都等于 5 ;
对于数列③,从第2项起,每一项与前一项的差都等于 -2.5 ;
对于数列④,从第2项起,每一项与前一项的差都等于 72 ;
由学生归纳和概括出,以上四个数列从第2项起,每一项与前一项的差都等于同一个常数(即:每个都具有相邻两项差为同一个常数的特点)。
[等差数列的概念]
对于以上几组数列我们称它们为等差数列。请同学们根据我们刚才分析等差数列的特征,尝试着给等差数列下个定义:
等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
这个常数叫做等差数列的公差,公差通常用字母d表示。那么对于以上四组等差数列,它们的公差依次是5,5,-2.5,72。
提问:如果在与中间插入一个数A,使,A,成等差数列数列,那么A应满足什么条件?
由学生回答:因为a,A,b组成了一个等差数列,那么由定义可以知道:
A-a=b-A
所以就有
由三个数a,A,b组成的等差数列可以看成最简单的等差数列,这时,A叫做a与b的等差中项。
不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项。
如数列:1,3,5,7,9,11,13…中
5是3和7的等差中项,1和9的等差中项。
9是7和11的等差中项,5和13的等差中项。
看来,
从而可得在一等差数列中,若m+n=p+q

[等差数列的通项公式]
对于以上的等差数列,我们能不能用通项公式将它们表示出来呢?这是我们接下来要学习的内容。
⑴、我们是通过研究数列的第n项与序号n之间的关系去写出数列的通项公式的。下面由同学们根据通项公式的定义,写出这四组等差数列的通项公式。
由学生经过分析写出通项公式:
这个数列的第一项是5,第2项是10(=5+5),第3项是15(=5+5+5),第4项是20(=5+5+5+5),……由此可以猜想得到这个数列的通项公式是
② 这个数列的第一项是48,第2项是53(=48+5),第3项是58(=48+5×2),第4项是63(=48+5×3),由此可以猜想得到这个数列的通项公式是
③ 这个数列的第一项是18,第2项是15.5(=18-2.5),第3项是13(=18-2.5×2),第4项是10.5(=18-2.5×3),第5项是8(=18-2.5×4),第6项是5.5(=18-2.5×5)由此可以猜想得到这个数列的通项公式是
④ 这个数列的第一项是10072,第2项是10144(=10172+72),第3项是10216(=10072+72×2),第4项是10288(=10072+72×3),第5项是10360(=10072+72×4),由此可以猜想得到这个数列的通项公式是
⑵、那么,如果任意给了一个等差数列的首项和公差d,它的通项公式是什么呢?
引导学生根据等差数列的定义进行归纳:

所以
……
思考:那么通项公式到底如何表达呢?
……
得出通项公式:由此我们可以猜想得出:以为首项,d为公差的等差数列的通项公式为:
也就是说,只要我们知道了等差数列的首项和公差d,那么这个等差数列的通项就可以表示出来了。
选讲:除此之外,还可以用迭加法和迭代法推导等差数列的通项公式:
(迭加法): 是等差数列,所以
……
两边分别相加得
所以
(迭代法):是等差数列,则有
……
所以
[例题分析]
例1、⑴求等差数列8,5,2,…的第20项.
⑵-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?
分析:⑴要求出第20项,可以利用通项公式求出来。首项知道了,还需要知道的是该等差数列的公差,由公差的定义可以求出公差;
⑵这个问题可以看成是上面那个问题的一个逆问题。要判断这个数是不是数列中的项,就是要看它是否满足该数列的通项公式,并且需要注意的是,项数是否有意义。
解:⑴由=8,d=5-8=-3,n=20,得
⑵由=-5,d=-9-(-5)=-4,得这个数列的通项公式为由题意知,本题是要回答是否存在正整数n,使得-401=-4n-1成立。
解这个关于n的方程,得n=100,即-401是这个数列的第100项。
例题评述:从该例题中可以看出,等差数列的通项公式其实就是一个关于、、d、n(独立的量有3个)的方程;另外,要懂得利用通项公式来判断所给的数是不是数列中的项,当判断是第几项的项数时还应看求出的项数是否为正整数,如果不是正整数,那么它就不是数列中的项。
(放投影片)例2.某市出租车的计价标准为1.2元/km,起步价为10元,即最初的4km(不含4千米)计费10元。如果某人乘坐该市的出租车去往14km处的目的地,且一路畅通,等候时间为0,需要支付多少车费?
解:根据题意,当该市出租车的行程大于或等于4km时,每增加1km,乘客需要支付1.2元.所以,我们可以建立一个等差数列来计算车费.
令=11.2,表示4km处的车费,公差d=1.2。那么当出租车行至14km处时,n=11,此时需要支付车费
答:需要支付车费23.2元。
例题评述:这是等差数列用于解决实际问题的一个简单应用,要学会从实际问题中抽象出等差数列模型,用等差数列的知识解决实际问题。
(放投影片)思考例题:例3 已知数列的通项公式为其中p、q为常数,且p≠0,那么这个数列一定是等差数列吗?
分析:判定是不是等差数列,可以利用等差数列的定义,也就是看(n>1)是不是一个与n无关的常数。
解:取数列中的任意相邻两项(n>1),
求差得
它是一个与n无关的数.
所以是等差数列。
课本左边“旁注”:这个等差数列的首项与公差分别是多少?
这个数列的首项。由此我们可以知道对于通项公式是形如的数列,一定是等差数列,一次项系数p就是这个等差数列的公差,首项是p+q.
例题评述:通过这个例题我们知道判断一个数列是否是等差数列的方法:如果一个数列的通项公式是关于正整数n的一次型函数,那么这个数列必定是等差数列。
[探究]
引导学生动手画图研究完成以下探究:
⑴在直角坐标系中,画出通项公式为的数列的图象。这个图象有什么特点?
⑵在同一个直角坐标系中,画出函数y=3x-5的图象,你发现了什么?据此说一说等差数列与一次函数y=px+q的图象之间有什么关系。
分析:⑴n为正整数,当n取1,2,3,……时,对应的可以利用通项公式求出。经过描点知道该图象是均匀分布的一群孤立点;
⑵画出函数y=3x-5的图象一条直线后发现数列的图象(点)在直线上,数列的图象是改一次函数当x在正整数范围内取值时相应的点的集合。于是可以得出结论:等差数列的图象是一次函数y=px+q的图象的一个子集,是y=px+q定义在正整数集上对应的点的集合。
该处还可以引导学生从等差数列中的p的几何意义去探究。
[随堂练习]
例1之后:课本45页“练习”第1题;
例2之后:课本45页“练习”第2题;
[课堂小结]
本节主要内容为:
①等差数列定义:即(n≥2)
②等差数列通项公式:(n≥1)
推导出公式:
(五)评价设计
1、已知是等差数列.
⑴ 是否成立?呢?为什么?
⑵ 是否成立?据此你能得出什么结论?
是否成立?据此你又能得出什么结论?
2、已知等差数列的公差为d.求证:
w.w.w.k.s.5.u.c.o.m
www.
(n-1)个等式(共26张PPT)
高考赘源网
高考资源
边的高考专家!
等差数列(二)
课前自主学案
心学习目标
概念、性质解决
1.等差数列的常用设法
①若有四个数成等差数列,则一般设为a-3d,a-dl,
②若有三个数成等差数列,则一般设为a-a,a
2.已知等差数列{an}的项an1,an以及公差t,则a2=an+
d
3.在等差数列{an中,若mn-= pt g(rn, n, g、力∈N“),则a
4.若数列{an}是公差为d的等差数列,则
(入、b是常数)是公差为入d的等差数列
5.若数列{an}、{b}都是等差数列,则数列{a
a
D自主探究
等差数列在实际中的
C例1
果某人乘
等差数列在实际中的
C例1
果某人乘


将实

第一年起,第


例2

等差数列通
第61项
等差数列性质的应用
C例3在等
等差数列性质的应用
C例3在等
方法

悟吾

→随堂反馈练习→◇
等差数列{an}中,a1=4,49=36,则c5等于
A.40
B.32
C.20
2.在等差数列51,47,43,…,第一个负数项为
A.第13项
B.第14项
C.第15项
D.第16项
解析数
3.已知等差数列{an}中,a4=-8,4=-20,则数列{an}的通
项公式a
4.已知等差数列{an}中,c与a是方程x2-4x+3=0的两
根,则a3+as
质,将会简
提高解题
活页作业一
.若{an}为等差数列,则下列数列中
①{pa};②{pan+q;③{n·an};④{a2n};⑤{a1+an+1}(其
中力、q为常数),等差数列的个数为


已知m和2n的等差中项是4,2m和n的等差中项是5,则m
和n的等差中项是
A.2
B.3
D.9

的等
设m,a1,a2,成等差数列,m,b,b,b,n也成等差数列,其
中m≠n,则2的值为
A
B
4
D
4


4.设等差数列{a2}的前n项和为S3,若S3=9,S=36.则a+
a+c等于
A.63
B.4
C.36
D.27

等差数列{an}中,a3,a9是方程2x2-x-7=0的两根,则c

B
D

6.在公差为c的等差数列{an}中,an+=an+
(用
n,d表示,其中m,n∈N“)
在a,1(a≠b)之间插入两个数,使它们组成等差数列,则公
差l
8.在1与25之间插入五个数,使其组成等差数列,则这五个数
为第2课时 等差数列
1.等差数列的定义: - =d(d为常数).
2.等差数列的通项公式:
⑴ an=a1+ ×d
⑵ an=am+ ×d
3.等差数列的前n项和公式:
Sn= = .
4.等差中项:如果a、b、c成等差数列,则b叫做a与c的等差中项,即b= .
5.数列{an}是等差数列的两个充要条件是:
⑴ 数列{an}的通项公式可写成an=pn+q(p, q∈R)
⑵ 数列{an}的前n项和公式可写成Sn=an2+bn
(a, b∈R)
6.等差数列{an}的两个重要性质:
⑴ m, n, p, q∈N*,若m+n=p+q,则 .
⑵ 数列{an}的前n项和为Sn,S2n-Sn,S3n-S2n成 数列.
例1. 在等差数列{an}中,
(1)已知a15=10,a45=90,求a60;
(2)已知S12=84,S20=460,求S28;
(3)已知a6=10,S5=5,求a8和S8.
解:(1)方法一:
∴a60=a1+59d=130.
方法二:,由an=am+(n-m)da60=a45+(60-45)d=90+15×=130.
(2)不妨设Sn=An2+Bn,

∴Sn=2n2-17n
∴S28=2×282-17×28=1092
(3)∵S6=S5+a6=5+10=15,
又S6=
∴15=即a1=-5
而d=
∴a8=a6+2 d=16
S8=
变式训练1.在等差数列{an}中,a5=3,a6=-2,则a4+a5+…+a10= .
解:∵d=a6-a5=-5,
∴a4+a5+…+a10=
例2. 已知数列{an}满足a1=2a,an=2a-(n≥2).其中a是不为0的常数,令bn=.
⑴ 求证:数列{bn}是等差数列.
⑵ 求数列{an}的通项公式.
解:∵ ⑴ an=2a- (n≥2)
∴ bn= (n≥2)
∴ bn-bn-1= (n≥2)
∴ 数列{bn}是公差为的等差数列.
⑵ ∵ b1==
故由⑴得:bn=+(n-1)×=
即:= 得:an=a(1+)
变式训练2.已知公比为3的等比数列与数列满足,且,
(1)判断是何种数列,并给出证明;
(2)若,求数列的前n项和
解:1),即 为等差数列。
(2)。
例3. 已知{an}为等差数列,Sn为数列{an}的前n项和,已知S7=7,S15=75,Tn为数列{}前n项和。求Tn.
解:设{an}首项为a1公差为d,由
∴ Sn=
∴ ∴Tn=
变式训练3.两等差数列{an}、{bn}的前n项和的比,则的值是 ( )
A. B. C. D.
解:B 解析:。
例4. 美国某公司给员工加工资有两个方案:一是每年年末加1000美元;二是每半年结束时加300美元.问:
⑴ 从第几年开始,第二种方案比第一种方案总共加的工资多?
⑵ 如果在该公司干10年,问选择第二种方案比选择第一种方案多加工资多少美元?
⑶ 如果第二种方案中每半年加300美元改为每半年加a美元.
问a取何值时,总是选择第二种方案比第一种方案多加工资?
解:⑴ 设工作年数为n(n∈N*),第一种方案总共加的工资为S1,第二种方案总共加的工资为S2.则:
S1=1000×1+1000×2+1000×3+…+1000n
=500(n+1)n
S2=300×1+300×2+300×3+…+300×2n
=300(2n+1)n
由S2>S1,即:300(2n+1)n>500(n+1)n
解得:n>2
∴ 从第3年开始,第二种方案比第一种方案总共加的工资多.
⑵ 当n=10时,由⑴得:S1=500×10×11=55000
S2=300×10×21=63000
∴ S2-S1=8000
∴ 在该公司干10年,选第二种方案比选第一种方案多加工资8000美元.
⑶ 若第二种方案中的300美元改成a美元.
则=an(2n+1) n∈N*
∴ a>=250+≥250+

变式训练4.假设某市2004年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,
(1)该市历年所建中低价房的累计面积(以2004年为累计的第一年)将首次不少于4750万平方米
(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%
解:(1)设中低价房面积形成数列{an},由题意可知{an}是等差数列,
其中a1=250,d=50,则Sn=250n+=25n2+225n,
令25n2+225n≥4750,即n2+9n-190≥0,而n是正整数, ∴n≥10.
到2013年底,该市历年所建中低价房的累计面积将首次不少于4750万平方米.
(2)设新建住房面积形成数列{bn},由题意可知{bn}是等比数列,
其中b1=400,q=1.08,则bn=400·(1.08)n-1·0.85.
由题意可知an>0.85 bn,有250+(n-1)·50>400·(1.08)n-1·0.85.
由计箅器解得满足上述不等式的最小正整数n=6.
到2009年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%.
1.欲证{an}为等差数列,最常见的做法是证明:an+1-an=d(d是一个与n无关的常数).
2.a1,d是等差数列的最关键的基本量,通常是先求出a1,d,再求其他的量,但有时运算较繁.
3.对等差数列{an}的最后若干项的求和,可以把数列各项的顺序颠倒,看成公差为-d的等差数列进行求和.
4.遇到与等差数列有关的实际问题,须弄清是求项的问题还是求和的问题.
基础过关
典型例题
归纳小结