高中数学 新人教a版必修1 全册教案(打包27套)

文档属性

名称 高中数学 新人教a版必修1 全册教案(打包27套)
格式 zip
文件大小 2.0MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2011-09-15 15:51:15

文档简介

1.2.4函数的表示法(二)
(一)教学目标 ( http: / / www. )1.知识与技能
(1)能根据不同情境,选用恰当的方法,求出已知函数的解析式; ( http: / / www. )(2)会利用函数的图象求函数值域.
2.过程与方法 ( http: / / www. )(1)经历在分析、求解求有关函数的解析式的过程,熟练掌握求解析式的基本题型及方法;
(2)在运用函数图象求函数值域的过程,体会数形结合思想. ( http: / / www. )3.情感、态度与价值观
在学习过程中进一步体会发现规律,应用规律的学习乐趣,从而提高学习数学的兴趣,提高学生的求知欲. ( http: / / www. )(二)教学重点与难点
重点:求函数解析式的基本题型及方法. ( http: / / www. )难点:函数图象的应用.
(三)教学方法 ( http: / / www. )指导启发式学习法,通过自我尝试与实践,获得知识,形成技能,通过老师的合理恰当的指导启发,克服学习障碍;学会突破难点,调整和寻找最佳解题方案.
(四)教学过程
教学环节 教学内容 师生互动 设计意图
复习回顾 ( http: / / www. )整合知识 函数的表示法有三种:解析式、图象法、列表法;它们之间可相互转化,常见形式有:解析式图象法,解析式列表法. 师生合作总结上节课的基本知识及基本方法.重新体会对于特殊函数可进行三种形式之间的互相转化. ( http: / / www. )师:分析实现不同形式的转化的意义. 复习回顾、整合知识
进入课题(求函数解析式) 例1 (1)已知f (x)是一次函数,且f [f (x)] = 4x – 1,求f (x)及f (2);(2)已知,求f (x)的解析式; ( http: / / www. )(3)已知f (x) = x (x≠0),求f (x)的解析式;(4)已知3f (x5) + f (–x5) = 4x,求f (x)的解析式. ( http: / / www. ). 学习尝试练习求解,老师指导、点评. 师生合作归纳题型特点及适用方法.例1解:(1)设f (x) = ax + b (a≠0).则f [f (x)] = f (ax + b) = a (ax + b) + b = a2x + ab + b.又f [f (x)] = 4x – 1,∴a2x + ab + b = 4x – 1.即或∴f (x) = 2x –,或f (x) = –2x + 1.则,或f (2) = –3.(2)解法一:∵===,∴f (x) ===.解法二:设t = 1+,则.又,∴==,∴.(3)令x = a (a≠0),则+ f (a) = a;令x =(a≠0),则2 f (a) +.联立上述两式得f (a) = .∴f (x) =(x≠0).(4)令x = a,或x = –a,分别可得解之得f (a5) = 2a.又令a5 = t,∴,∴f (t) = 2,∴f (x) = 2.例2解:法一:由f (0) = 1,f (x – y) = f (x) – y(2x+y+1).设x=y,得f (0)= f (x)–x (2x–x+1).∵f (0) = 1,∴f (x)–x (2x–x+1) = 1,∴f (x) = x2 + x + 1.法二:令x = 0,得f (0–y) = f (0) – y (–y + 1),即f (–y) = 1 – y (–y + 1).又令–y = x代入上式得f (x) = 1– (–x) (x + 1) = 1 + x (x + 1) = x2 + x + 1.即f (x) = x2 + x + 1.例3解:设f (x)=ax2+bx+c (a≠0),则f (x+1) + f (x – 1) = a (x+1)2 + b (x + 1) + c + a (x – 1) + c + a (x – 1)2 + b (x – 1) + c = 2ax2 + 2bx + 2a + 2c = 2x2 – 4x.∴∴f (x) = x2 – 2x – 1. 掌握求函数解析式的基本类型及对应方法.
应用举例(函数应用问题) 例4 用长为l的铁丝变成下部为矩形,上部为半圆形的框架如图所示,若矩形底边长为2x,求此框架围成的面积y与x的函数关系式,并指出其定义域.例5 某市“招手即停”公共汽车的票价按下列规则制定:(1)5公里以内(含5公里),票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里的按5公里计算).如果某条线路的总里程为20公里,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象. 我们把像例4这样的函数称为分段函数.即在函数的定义域内,对于自变量x的值的不同取值区间,有着不同的对应法则,这样的函数通常叫分段函数. 生活中,有很多可以用分段函数描述的实际问题,如出租车的计费、个人所得税纳税额等等. 师生合作解析例3、例4.师:反映实际问题的函数定义域怎样确定?生:解析式有意义和实际问题自身条件确定.例4解:矩形的长AB = 2x,宽为a,则有2x + 2a +x = l,∴.半圆的直径为2x,半径为x,所以·2x =,由实际意义得0<x<.即,定义域为.例5解:设票价为y,里程为x,由题意可知,自变量x的取值范围是(0, 20].由“招手即停”公共汽车票价的制定规则,可得到以下函数解析式:根据这个函数解析式,可画出函数图象,如下图. 培养学生应用数学知识,解决实际问题的能力.
归纳总结 1.求函数解析式的方法:换元法、配方法、待定系数法、赋值法.2.求实际问题函数解析式,关键找具有因果关系的两个变量的联系式. 师生合作总结.学生整理、小结,老师点评、归纳. 整合知识形成技能.
课后作业 1.2 第四课时习案 学生独立完成 巩固基础、提高能力
备选例题
例1 经市场调查,某商品在近100天内,其销售量和价格均是时间t的函数,且销售量近似地满足关系g (t) = (t∈N*,0<t≤100),在前40天内价格为f (t) =+ 22(t∈N*,0≤t≤40),在后60天内价格为(t∈N*,40<t≤100),求这种商品的日销售额的最大值(近似到1元).
【解析】前40天内日销售额为:
=

后60天内日销售额为:
=.

∴得函数关系式
由上式可知:对于0<t≤40且t∈N*,有当t = 10或11时,Smax≈809.
对于40<t≤100且t∈N*,有当t = 41时,Smax = 714.
综上所述得:当t = 10或11时,Smax≈809.
答:第10天或11天日售额最大值为809元.
( http: / / www. / )
2x
D
C
A
B§1.1.1集合的含义与表示
一. 教学目标:
l.知识与技能
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;
(2)知道常用数集及其专用记号;
(3)了解集合中元素的确定性.互异性.无序性;
(4)会用集合语言表示有关数学对象;
(5)培养学生抽象概括的能力.
2. 过程与方法
(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.
(2)让学生归纳整理本节所学知识.
3. 情感.态度与价值观
使学生感受到学习集合的必要性,增强学习的积极性.
二. 教学重点.难点
重点:集合的含义与表示方法.
难点:表示法的恰当选择.
三. 学法与教学用具
1. 学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.
2. 教学用具:投影仪.
四. 教学思路
(一)创设情景,揭示课题
1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗
引导学生回忆.举例和互相交流. 与此同时,教师对学生的活动给予评价.
2.接着教师指出:那么,集合的含义是什么呢 这就是我们这一堂课所要学习的内容.
(二)研探新知
1.教师利用多媒体设备向学生投影出下面9个实例:
(1)1—20以内的所有质数;
(2)我国古代的四大发明;
(3)所有的正方形;
(4)海南省在2004年9月之前建成的所有立交桥;
(5)到一个角的两边距离相等的所有的点;
(6)方程的所有实数根;
(7)不等式的所有解;
(8)国兴中学2004年9月入学的高一学生的全体.
2.教师组织学生分组讨论:这8个实例的共同特征是什么
3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出8个实例的特征,并给出集合的含义.
一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集)。
4.教师指出:集合常用大写字母A,B,C,D,…表示,元素常用小写字母…表示.
(三)质疑答辩,排难解惑,发展思维
1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点 并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.
2.教师组织引导学生思考以下问题:
判断以下元素的全体是否组成集合,并说明理由:
(1)大于3小于11的偶数;
(2)我国的小河流.
让学生充分发表自己的建解.
3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.
4.教师提出问题,让学生思考
如果用A表示高—(3)班全体学生组成的集合,用表示高一(3)班的一位同学,是高一(4)班的一位同学,那么与集合A分别有什么关系 由此引导学生得出元素与集合的关系有两种:属于和不属于.
如果是集合A的元素,就说属于集合A,记作.
如果不是集合A的元素,就说不属于集合A,记作.
5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.
6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:
(1)要表示一个集合共有几种方式
(2)试比较自然语言.列举法和描述法在表示集合时,各自有什么特点 适用的对象是什么
(3)如何根据问题选择适当的集合表示法
使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。
五.典例剖析
例1. 用例举法表示集合 答案:
例2.下列命题:若,则; 表示只有一个元素的集合;
方程的解的集合可表示成;其中正确的命题个数是( )答案:(2)
例3.已知,且,求实数的值。
解:或。或。但时,,与集合中元素的互异性矛盾,
六. 随堂练习
1.已知集合中的三个元素可成为的三边长,
那么一定不是 答案:D_
2.设都是非零实数,可能取的值组成的集合是
3.已知,且,则的值为
4.对于集合,若,则,那么的值为__或_
5.给出下面三个关系式:其中正确的个数是_
6.集合,则集合中元素的个数是
7.设集合,则下列关系是成立的是___
七.归纳整理,整体认识
在师生互动中,让学生了解或体会下例问题:
1.本节课我们学习过哪些知识内容
2.你认为学习集合有什么意义?
3.选择集合的表示法时应注意些什么
八.承上启下,留下悬念
1.课后书面作业:第5页1,2题。
2. 元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种呢?如何表示?
( http: / / www. / )3.2.2 几类不同增长的函数模型
(一)教学目标
1.知识与技能
利用函数增长的快慢一般规律,借助函数模型,研究解决实际问题,培养数学的应用意识.
2.进程与方法
在实例分析、解决的过程中,体会函数增长快慢的实际意义,从而提高学生应用数学解决实际问题的能力.
3.情感、态度与价值观
在实际问题求解的过程中,享受数学为人们的生产和生活服务的乐趣,激发学生学习数学知识的兴趣.
(二)教学重点与难点
重点:应用数学理论解决实际问题的兴趣培养和能力提升
难点:函数建模及应用函数探求问题的能力培养.
(三)教学方法
尝试指导与合作交流相结合,学生自主学习和老师引导相结合.解决实际问题范例,培养学生利用函数增长快慢的数学知识对实际问题进行探究和决策.
(四)教学过程
教学环节 教学内容 师生互动 设计意图
回顾复习引入深题 ①增函数的增长快慢比较方法:利用列表与图象,借助二分法求根,探究快慢相应区间获得一般结论. 师:幂函数、指数函数、对数函数的增长快慢一般性规律.生:回顾总结,口述回答. 以旧引新导入课题
实例分析 例1 假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天回报比前一天翻一番.请问,你会选择哪种投资方案?例2 某公司为了实现1000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:y = 0.25x,y = log7x + 1,y = 1.002x,其中哪个模型能符合公司的要求? 师生合作探究解答过程例1 解答:设第x天所得回报是y元,则方案一可以用函数y = 40 (x∈N*)进行描述;方案二可以用函数y = 10x(x∈N*)进行描述;方案三可以用函数y = 0.4×2x–1(x∈N*)进行描述.三种方案所得回报的增长情况x/天方案一y/元增加量/元1402400340044005400640074008400940010400………30400x/天方案二y/元增加量/元11022010330104401055010660107701088010990101010010………3030010x/天方案三y/元增加量/元10.420.80.431.60.843.21.656.43.2612.86.4725.612.8851.225.69102.451.210204.8102.4………30214748364.8107374182.4再作三个函数的图象在第1~3天,方案一最多;在第4天,方案一和方案二一样多,方案三最少;在第5~8天,方案二最多;第9天开始,方案三比其他两个方案所得回报多得多,到第30天,所得回报已超过2亿元.例2 解答:作出函数y=5,y=0.25x,y=log7x +1,y=1.002x的图象.观察图象发现,在区间[10,1000]上,模型y=0.25x,y=1.002x的图象都有一部分在直线y=5的上方,只有模型y=log7x+1的图象始终在y=5的下方,这说明只有按模型y=log7x+1进行奖励时才符合公司的要求.首先计算哪个模型的奖金总数不超过5万.对于模型y=0.25x,它在区间[10,1000]上递增,而且当x=20时,y=5,因此,当x>20时,y>5,所以该模型不符合要求;对于模型y=log7x+1,它在区间[10,1000]上递增,而且当x=1000时,y=log71000+1≈4.55<5,所以它符合奖金总数不超过5万元的要求.再计算按模型y=log7x+1奖励时,奖金是否不超过利润的25%,即当x∈[10,1000]时,是否有成立.令f(x)=log7 x+1– 0.25x,x∈[10,1000] 将实际问题转化为数学问题,利用图象、表格及恰当的推理,应用不同函数的增长快慢解决实际应用问题.
巩固练习 1.四个变量y1 ,y2 ,y3 ,y 4随变量x变化的数据如下表x051015y151305051130y2594.4781785.233733y35305580y452.31071.42951.1407x202530y1200531304505y26.37×1051.2×1072.28×108y3105130155y41.04611.01511.005关于x呈指数型函数变化的变量是 .2.某种计算机病毒是通过电子邮件进行传播的,如果某台计算机感染上这种病毒,那么它就会在下一轮病毒发作时传播一次病毒,并感染其他20台未感染病毒的计算机.现有10台计算机被第1轮病毒感染,问被第5轮病毒感染的计算机有多少台? 1.解:y22.解:设第1轮病毒发作时有a1=10台被感染,第2轮,第3轮……依次有a2台,a3 台……被感染,依题意有a5=10×204=160.答:在第5轮病毒发作时会有160万台被感染. 动手尝试提升解题能力
归纳总结 2.中学数学建模的主要步骤(1)理解问题:阅读理解,读懂文字叙述,认真审题,理解实际背景.弄清楚问题的实际背景和意义,设法用数学语言来描述问题.(2)简化假设:理解所给的实际问题之后,领悟背景中反映的实质,需要对问题作必要的简化,有时要给出一些恰当的假设,精选问题中关键或主要的变量.(3)数学建模:把握新信息,勇于探索,善于联想,灵活化归,根据题意建立变量或参数间的数学关系,实现实际问题数学化,引进数学符号,构建数学模型,常用的数学模型有方程、不等式、函数.(4)求解模型:以所学的数学性质为工具对建立的数学模型进行求解.(5)检验模型:将所求的结果代回模型之中检验,对模拟的结果与实际情形比较,以确定模型的有效性,如果不满意,要考虑重新建模.(6)评价与应用:如果模型与实际情形比较吻合,要对计算的结果作出解释并给出其实际意义,最后对所建立的模型给出运用范围.如果模型与实际问题有较大出入,则要对模型改进并重复上述步骤. 师生合作 反思归纳总结完善生:通过独立思考和必要的交流,分析归纳例1、例2的解题过程,简述建模的主要步骤.师:点评、总理学生的回答,然后完善归纳步骤.师生合作:结合上一课时总结函数增长快慢在实际应用问题中的应用体会. 培养整理知识的学习品质.通过知识整合培养数学应用能力.
课后练习 3.2 第二课时 习案 学生独立完成 强化基础提高能力
备选例题
例1 有一批影碟机(VCD)原销售价为每台800元,在甲、乙两家电商场均有销售. 甲商场用如下的方法促销,买一台单价为780元,买二台单价为760元,依次类推,每多买一台单价均减少20元,但每台最低不低于440元;乙商场一律按原价的75%销售,某单位需购买一批此类影碟机,问去哪家商场购买花费最小.
【解析】设单位购买x台影碟机,
在甲商场购买,每台的单价为800 – 20x,则总费用
在乙商场购买,费用y = 600x.
(1)当0<x<10时,(800x – 20x2)>600x
∴购买影碟机低于10台,在乙商场购买.
(2)当x = 10时,(800x – 20x2) = 600x
∴购买10台影碟机,在甲商场或在乙商场费用一样.
(3)当10<x≤18时,(800x – 20x2)<600x
∴购买影碟机多于10台且不多于18台,在甲商场购买.
(4)当x≥18时,600x>440x
∴购买影碟机多于18台,在甲商场购买.
答:若购买小于10台,去乙商场购买;若购买10台,在甲商场或在乙商场费用一样多;若购买多于10台,在甲商场购买.
【评析】实际应用问题求解,理解题意建立模型是关键,建好模型后实际问题使自然转化为数学问题.
例2 某皮鞋厂今年1月份开始投产,并且前4个月的产量分别为1万双,1.2万双,1.3万双,1.37万双. 由于产品质量好,款式新颖,前几个月的销售情况良好.为了推销员在推销产品时,接受定单不至于过多或过少,需要估计以后几个月的产量. 厂里分析,产量的增加是由于工人生产熟练和理顺了生产流程. 厂里也暂时不准备增加设备和工人. 假如你是厂长,就月份x,产量为y给出四种函数模型:y = ax + b,y = ax2 + bx + c,y = a+ b,y = abx + c,你将利用哪一种模型去估算以后几个月的产量?
【解析】本题是通过数据验证,确定系数,然后分析确定函数变化情况,最终找出与实际最接近的函数模型.
由题意知A(1,1),B(2,1.2),C(3,1.3),D(4,1.37).
(1)设模拟函数为y=ax+b,将B、C两点的坐标代入函数式,有,解得
所以得y=0.1x+1.
因此此法的结论是:在不增加工人和设备的条件下,产量会月月上升1000双,这是不太可能的.
(2)设y = ax2 + bx + c,将A、B、C三点代入,有,解得,
所以y= – 0.05x2+0.35x+0.7.
因此由此法计算4月份产量为1.3万双,比实际产量少700双,而且,由二次函数性质可知,产量自4月份开始将月月下降(图象开口向下,对称轴x=3.5),不合实际.
(3)设y=+b,将A,B两点的坐标代入,有,解得,
所以y=.
因此把x = 3和4代入,分别得到y=1.35和1.48,与实际产量差距较大.
(4)设y = abx + c,将A,B,C三点的坐标代入,得,解得,
所以y= – 0.8×(0.5)x+1.4.
因此把x= 4代入得y= – 0.8×0.54+1.4=1.35.比较上述四个模拟函数的优劣,既要考虑到误差最小,又要考虑生产的实际,比如增产的趋势和可能性. 经过筛选,以指数函数模拟为最佳,一是误差小,二是由于新建厂,开始随工人技术、管理效益逐渐提高,一段时间内产量会明显上升,但过一段时间之后,如果不更新设备,产量必然趋于稳定,而指数函数模拟恰好反映了这种趋势.
因此,选用y= –0.8×0.54+1.4模拟比较接近客观实际.
【评析】本题是对数据进行函数模拟,选择最符合的模拟函数.一般思路要先画出散点图,然后作出模拟函数的图象,选择适合的几种函数类型后,再加以验证.函数模型的建立是最大的难点,另外运算量较大,必须借助计算机进行数据处理,函数模型的可靠性与合理性既需要数据检验,又必须与实际结合起来.
( http: / / www. / )§1.1.1集合的含义与表示
一. 教学目标:
l.知识与技能
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;
(2)知道常用数集及其专用记号;
(3)了解集合中元素的确定性.互异性.无序性;
(4)会用集合语言表示有关数学对象;
(5)培养学生抽象概括的能力.
2. 过程与方法
(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.
(2)让学生归纳整理本节所学知识.
3. 情感.态度与价值观
使学生感受到学习集合的必要性,增强学习的积极性.
二. 教学重点.难点
重点:集合的含义与表示方法.
难点:表示法的恰当选择.
三. 学法与教学用具
1. 学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.
2. 教学用具:投影仪.
四. 教学思路
(一)创设情景,揭示课题
1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗
引导学生回忆.举例和互相交流. 与此同时,教师对学生的活动给予评价.
2.接着教师指出:那么,集合的含义是什么呢 这就是我们这一堂课所要学习的内容.
(二)研探新知
1.教师利用多媒体设备向学生投影出下面9个实例:
(1)1—20以内的所有质数;
(2)我国古代的四大发明;
(3)所有的正方形;
(4)海南省在2004年9月之前建成的所有立交桥;
(5)到一个角的两边距离相等的所有的点;
(6)方程的所有实数根;
(7)不等式的所有解;
(8)国兴中学2004年9月入学的高一学生的全体.
2.教师组织学生分组讨论:这8个实例的共同特征是什么
3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出8个实例的特征,并给出集合的含义.
一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集)。
4.教师指出:集合常用大写字母A,B,C,D,…表示,元素常用小写字母…表示.
(三)质疑答辩,排难解惑,发展思维
1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点 并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.
2.教师组织引导学生思考以下问题:
判断以下元素的全体是否组成集合,并说明理由:
(1)大于3小于11的偶数;
(2)我国的小河流.
让学生充分发表自己的建解.
3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.
4.教师提出问题,让学生思考
如果用A表示高—(3)班全体学生组成的集合,用表示高一(3)班的一位同学,是高一(4)班的一位同学,那么与集合A分别有什么关系 由此引导学生得出元素与集合的关系有两种:属于和不属于.
如果是集合A的元素,就说属于集合A,记作.
如果不是集合A的元素,就说不属于集合A,记作.
5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.
6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:
(1)要表示一个集合共有几种方式
(2)试比较自然语言.列举法和描述法在表示集合时,各自有什么特点 适用的对象是什么
(3)如何根据问题选择适当的集合表示法
使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。
五.典例剖析
例1. 用例举法表示集合 答案:
例2.下列命题:若,则; 表示只有一个元素的集合;
方程的解的集合可表示成;其中正确的命题个数是( )答案:(2)
例3.已知,且,求实数的值。
解:或。或。但时,,与集合中元素的互异性矛盾,
六. 随堂练习
1.已知集合中的三个元素可成为的三边长,
那么一定不是 答案:D_
2.设都是非零实数,可能取的值组成的集合是
3.已知,且,则的值为
4.对于集合,若,则,那么的值为__或_
5.给出下面三个关系式:其中正确的个数是_
6.集合,则集合中元素的个数是
7.设集合,则下列关系是成立的是___
七.归纳整理,整体认识
在师生互动中,让学生了解或体会下例问题:
1.本节课我们学习过哪些知识内容
2.你认为学习集合有什么意义?
3.选择集合的表示法时应注意些什么
八.承上启下,留下悬念
1.课后书面作业:第5页1,2题。
2. 元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种呢?如何表示?
( http: / / www. / )2.1.1 指数与指数幂的运算(三)
(一)教学目标 ( http: / / www. )1.知识与技能:
能熟练地运用有理指数幂运算性质进行化简,求值. ( http: / / www. )2.过程与方法:
通过训练点评,让学生更能熟练指数幂运算性质. ( http: / / www. )3.情感、态度、价值观
(1)培养学生观察、分析问题的能力; ( http: / / www. )(2)培养学生严谨的思维和科学正确的计算能力.
(二)教学重点、难点 ( http: / / www. )1.重点:运用有理指数幂性质进行化简,求值.
2.难点:有理指数幂性质的灵活应用. ( http: / / www. )(三)教学方法
1.启发学生认识根式与分数指数幂实质是相同的.并能熟练应用有理指数幂的运算性质对根式与分数指数幂进行互化. ( http: / / www. )2.引导学生在化简求值的过程中,注意将根式转化为分数指数幂的形式和积累一些常用技巧.如凑完全平方、分解因式、化小数为分数等等.另外,在运用有理指数幂的运算性质化简变形时,应注意根据底数进行分类,以精简解题的过程.
(四)教学过程
教学 ( http: / / www. )环节 教学内容 师生互动 设计意图
复习引入 复习 ( http: / / www. )1.分数指数幂的概念. ( http: / / www. )2.分数指数幂的运算性质. ( http: / / www. ) ( http: / / www. ) 师:提出问题生:复习回顾 ( http: / / www. )师:总结完善 复习旧知,为新课作铺垫.
应用举例 例1.(P56,例4)计算下列各式(式中字母都是正数) ( http: / / www. )(1)(2) ( http: / / www. )(1)(2)>0)课堂练习:化简:(1);(2);(3) . 学生思考,口答,教师板演、点评.例1 (先由学生观察以上两个式子的特征,然后分析、提问、解答)分析:四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号的. 整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序.我们看到(1)小题是单项式的乘除运算;(2)小题是乘方形式的运算,它们应让如何计算呢?其实,第(1)小题是单项式的乘除法,可以用单项式的运算顺序进行.第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算.解:(1)原式===4(2)原式= =例2 分析:在第(1)小题中,只含有根式,且不是同类根式,比较难计算,但把根式先化为分数指数幂再计算,这样就简便多了,同样,第(2)小题也是先把根式转化为分数指数幂后再由运算法则计算.解:(1)原式= = = = = (2)原式=.小结:运算的结果不强求统一用哪一种形式表示,但不能同时含有根号和分数指数,也不能既有分母,又含有负指数.练习答案:解(1)原式==;(2)原式==2;(3)原式===. 通过这二个例题的解答,巩固所学的分数指数幂与根式的互化,以及分数指数幂的求值,提高运算能力.强化解题技巧.
归纳总结 1.熟练掌握有理指数幂的运算法则,化简的基础.2.含有根式的式子化简,一般要先把根式转化为分数指数幂后再计算. 先让学生回顾反思,然后师生共同总结,完善. 巩固本节学习成果,形成知识体系.
课后作业 作业:2.1 第三课时 习案 学生独立完成 巩固新知提升能力
备选例题
例1 已知,求下列各式的值.
【分析】从已知条件中解出a的值,然后再代入求值,这种方法是不可取的,而应设法从整体寻求结果与条件的联系,进而整体代入求值.
【解析】(1)将两边平方,


(2)将上式平方,有
(3)由于
【小结】对“条件求值”问题一定要弄清已知与未知的联系,然后采取“整体代换”或“求值后代换”两种方法求值.
例2 化简
【分析】根据本题的特点,须注意到


应对原式进行因式分解.
【解析】原式
【小结】解这类题,要注意运用下列公式:
( http: / / www. / )1.2.1 函数的概念(第一课时)
课 型:新授课
教学目标:
(1)通过丰富实例,学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;
(2)了解构成函数的三要素;
(3)能够正确使用“区间”的符号表示某些集合。
教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数。
教学难点:理解函数的模型化思想,用集合与对应的语言来刻画函数。
教学过程:
一、问题链接:
1. 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?
2.回顾初中函数的定义:
在一个变化过程中,有两个变量x和y,对于x的每一个确定的值,y都有唯一的值与之对应,此时y是x的函数,x是自变量,y是因变量。
表示方法有:解析法、列表法、图象法.
二、合作探究展示:
探究一:函数的概念:
思考1:(课本P15)给出三个实例:
A.一枚炮弹发射,经26秒后落地击中目标,射高为845米,且炮弹距地面高度h(米)与时间t(秒)的变化规律是。
B.近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况。(见课本P15图)
C.国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的高低。“八五”计划以来我们城镇居民的恩格尔系数如下表。(见课本P16表)
讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着怎样的对应关系? 三个实例有什么共同点?
归纳:三个实例变量之间的关系都可以描述为:对于数集A中的每一个x,按照某种对应关系f,在数集B中都与唯一确定的y和它对应,记作:
函数的定义:
设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数和它对应,那么称为从集合A到集合B的一个函数(function),记作:
其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合叫值域(range)。显然,值域是集合B的子集。
注意:
① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.
思考2:构成函数的三要素是什么?
答:定义域、对应关系和值域
小试牛刀.1下列四个图象中,不是函数图象的是( B ).
2.集合,,给出下列四个图形,其中能表示以M为定义域,N为值域的函数关系的是( B ).
归纳:(1)一次函数y=ax+b (a≠0)的定义域是R,值域也是R;
(2)二次函数 (a≠0)的定义域是R,值域是B;当a>0时,值域;当a﹤0时,值域。
(3)反比例函数的定义域是,值域是。
探究二:区间及写法:
设a、b是两个实数,且a满足不等式的实数x的集合叫做闭区间,表示为[a,b];
满足不等式的实数x的集合叫做开区间,表示为(a,b);
满足不等式的实数x的集合叫做半开半闭区间,表示为;
这里的实数a和b都叫做相应区间的端点。(数轴表示见课本P17表格)
符号“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”。我们把满足的实数x的集合分别表示为

小试牛刀:
用区间表示R、{x|x≥1}、{x|x>5}、{x|x≤-1}、{x|x<0}
(学生做,教师订正)
(三)例题讲解:
例1.已知函数,
求的值;
当a>0时,求的值。
(答案见P17例一)
练习.已知函数f(x)=x2+2,求f(-2),f(-a),f(a+1), f(f(x)).
答案:f(-2)=6 f(-a)=a2+2 f(a+1)=a2+2a+3 f(f(x))=x4+4x2+6
【例2】已知函数.
(1)求的值;(2)计算:.
解:(1)由.
(2)原式
点评:对规律的发现,能使我们实施巧算. 正确探索出前一问的结论,是解答后一问的关键.
(四)随堂检测:
1. 用区间表示下列集合:
2. 已知函数f(x)=3x+5x-2,求f(3)、f(-)、f(a)、f(a+1)的值;
3. 课本P19练习2。
4.已知=+x+1,则=__3+____;f[]=_57_____.
5.已知,则= —1 .
归纳小结:
函数模型应用思想;函数概念;二次函数的值域;区间表示
作业布置:
习题1.2A组,第4,5,6;
1.2.1函数的概念(第二课时)
课 型:新授课
教学目标:
(1)会求一些简单函数的定义域与值域,并能用“区间”的符号表示;
(2)掌握复合函数定义域的求法;
(3)掌握判别两个函数是否相同的方法。
教学重点:会求一些简单函数的定义域与值域。
教学难点:复合函数定义域的求法。
教学过程:
一、问题链接:
1. 提问:什么叫函数?其三要素是什么?函数y=与y=x是不是同一个函数?为什么?
2. 用区间表示函数y=ax+b(a≠0)、y=ax+bx+c(a≠0)、y=(k≠0)的定义域与值域。
二、合作探究展示:
探究一:函数定义域的求法:
函数的定义域通常由问题的实际背景确定,如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合。
例1:求下列函数的定义域
① ;② ;③ .
解:①∵x-2=0,即x=2时,分式无意义,
而时,分式有意义,∴这个函数的定义域是.
②∵3x+2<0,即x<-时,根式无意义,
而,即时,根式才有意义,
∴这个函数的定义域是{|}.
③∵当,即且时,根式和分式 同时有意义,
∴这个函数的定义域是{|且}
另解:要使函数有意义,必须:
∴这个函数的定义域是: {|且}
学生试求→订正→小结:定义域求法(分式、根式、组合式)
说明:求定义域步骤:列不等式(组) → 解不等式(组)
引导学生小结几类函数的定义域:
(1)如果f(x)是整式,那么函数的定义域是实数集R .
(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合 .
(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.
(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)
(5)满足实际问题有意义.
探究二:复合函数的定义域求法:
(1)已知f(x)的定义域为(a,b),求f(g(x))的定义域;
求法:由a(2)已知f(g(x))的定义域为(a,b),求f(x)的定义域;
求法:由a例2.已知f(x)的定义域为[0,1],求f(x+1)的定义域。
答案:
练习.已知函数的定义域为,则的定义域为( C ).
A. B. C. D.
例3.已知f(x-1)的定义域为[-1,0],求f(x+1)的定义域。
答案:
巩固练习:
1.求下列函数定义域:
(1); (2)
答案:(1) (2)
2.(1)已知函数f(x)的定义域为[0,1],求的定义域;
(2)已知函数f(2x-1)的定义域为[0,1],求f(1-3x)的定义域。
答案:(1) (2)
探究三:求函数的值域
已知函数求
(1)
(2)x
(3)x
答案:(1)(2)(3)
探究四:函数相同的判别方法:
例5.(课本P18例2)下列函数中哪个与函数y=x相等?
(1); (2);
(3); (4) 。
分析:
构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)
两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
解:⑴=(),,定义域不同且值域不同,不是;
⑵=(),,定义域值域都相同,是同一个函数;
⑶=||=,;值域不同,不是同一个函数。
(4) 定义域不同,不是同一个函数。
练习1.下列各组函数中,表示同一函数的是( C ).
A. B.
C. D.
2 下列各组中的两个函数是否为相同的函数?
① (定义域不同)
② (定义域不同)
③ (定义域、值域都不同)
(三)随堂检测:
1.课本 P19练习1,3;
2.求函数y=-x+4x-1 ,x∈[-1,3) 的值域。
归纳小结:
本堂课讲授了函数定义域值域的求法以及判断函数相等的方法。
作业布置:
习题1.2A组,第1,2;
( http: / / www. / )
A.
B.
C.
D.
x
y
0
-2
2
x
y
0
-2
2
2
x
y
0
-2
2
2
x
y
0
-2
2
2
A. B. C . D.§1.3.1函数的最大(小)值
一.教学目标
1.知识与技能:
理解函数的最大(小)值及其几何意义.
学会运用函数图象理解和研究函数的性质.
2.过程与方法:
通过实例,使学生体会到函数的最大(小)值,实际上是函数图象的最高(低)点的纵坐标,因而借助函数图象的直观性可得出函数的最值,有利于培养以形识数的解题意识.
3.情态与价值
利用函数的单调性和图象求函数的最大(小)值,解决日常生活中的实际问题,激发学生学习的积极性.
二.教学重点和难点
教学重点:函数的最大(小)值及其几何意义
教学难点:利用函数的单调性求函数的最大(小)值.
三.学法与教学用具
1.学法:学生通过画图、观察、思考、讨论,从而归纳出求函数的最大(小)值的方法和步骤.
2.教学用具:多媒体手段
四.教学思路
(一)创设情景,揭示课题.
画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征?
① ②
③ ④
(二)研探新知
1.函数最大(小)值定义
最大值:一般地,设函数的定义域为I,如果存在实数M满足:
(1)对于任意的,都有;
(2)存在,使得.
那么,称M是函数的最大值.
思考:依照函数最大值的定义,结出函数的最小值的定义.
注意:
①函数最大(小)首先应该是某一个函数值,即存在,使得;
②函数最大(小)应该是所有函数值中最大(小)的,即对于任意的,都有.
2.利用函数单调性来判断函数最大(小)值的方法.
①配方法 ②换元法 ③数形结合法
(三)质疑答辩,排难解惑.
例1.(教材P36例3)利用二次函数的性质确定函数的最大(小)值.
解(略)
例2.将进货单价40元的商品按50元一个售出时,能卖出500个,若此商品每个涨价1元,其销售量减少10个,为了赚到最大利润,售价应定为多少?
解:设利润为元,每个售价为元,则每个涨(-50)元,从而销售量减少

<100)

答:为了赚取最大利润,售价应定为70元.
例3.求函数在区间[2,6] 上的最大值和最小值.
解:(略)
例4.求函数的最大值.
解:令
(四)巩固深化,反馈矫正.
(1)P38练习4
(2)求函数的最大值和最小值.
(3)如图,把截面半径为25cm的图形木头锯成矩形木料,如果矩形一边长为,面积为,试将表示成的函数,并画出函数的大致图象,并判断怎样锯才能使得截面面积最大?
(五)归纳小结
求函数最值的常用方法有:
(1)配方法:即将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的最值.
(2)换元法:通过变量式代换转化为求二次函数在某区间上的最值.
(3)数形结合法:利用函数图象或几何方法求出最值.
(六)设置问题,留下悬念.
1.课本P45(A组) 6.7.8
2.求函数的最小值.
3.求函数.
① ② ③
( http: / / www. / )
251.1.3 集合的基本运算
学习目标:
(1)理解交集与并集的概念;
  (2)掌握两个较简单集合的交集、并集的求法;
  (3)通过对交集、并集概念的讲解,培养学生观察、比较、分析、概括、等能力,使学生认识由具体到抽象的思维过程;
  (4)通过对集合符号语言的学习,培养学生符号表达能力,培养严谨的学习作风,养成良好的学习习惯。
教学重点:交集和并集的概念
教学难点:交集和并集的概念、符号之间的区别与联系
合作探究展示:
问题衔接
我们知道两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?
思考(P8思考题),引入并集概念。
新课教学
并集
一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)
记作:A∪B 读作:“A并B”
即: A∪B={x|x∈A,或x∈B}
Venn图表示:
说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。
例题(P8-9例4、例5)
说明:连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。
问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。
交集
一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。
记作:A∩B 读作:“A交B”
即: A∩B={x|∈A,且x∈B}
交集的Venn图表示
说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。
例题(P9-10例6、例7)
拓展:求下列各图中集合A与B的并集与交集
说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集
探索研究
A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A
AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A
归纳小结(略)
作业布置
书面作业:P12习题1.1,第6-8题
拓展提高:
题型一 已知集合的交集、并集求参数问题
例1http://21世纪教育网/ ( http: / / www.21cnjy.com / ) 已知集合,若,
求实数的值http://21世纪教育网/ ( http: / / www.21cnjy.com / )
解:∵,∴,而,
∴当,
这样与矛盾;
当符合

练习1已知集合若求a的值
答案 a=-3
例2.已知若求的取值范围.
解(1)若此时
(2)若
综上所述,的取值范围是
练习2上题中若。
答案 :不存在
题型二 交集、并集性质的运用
例3 设,其中,
如果,求实数的取值范围http://21世纪教育网/ ( http: / / www.21cnjy.com / )
解:由,而,
当,即时,,符合;
当,即时,,符合;
当,即时,中有两个元素,而;
∴得
∴http://21世纪教育网/ ( http: / / www.21cnjy.com / )
练习3设集合求实数的取值范围.
答案:
随堂检验:
1.满足 ( B )
(A)1 (B)2 (C)3 (D)4
已知集合那么等于 ( B )
(B) (C) (D)
已知集合那么 ( D )
(0,2)(1,1) (B) (C) (D)
已知集合
已知集合则 -4
已知集合若求实数的取值范围 x
( http: / / www. / )
A∪B
A
B
A

A B
A(B)
A
B
B
A
B A2.1.1 指数与指数幂的运算(一)
(一)教学目标 ( http: / / www. )1.知识与技能
(1)理解n次方根与根式的概念; ( http: / / www. )(2)正确运用根式运算性质化简、求值;
(3)了解分类讨论思想在解题中的应用. ( http: / / www. )2.过程与方法
通过与初中所学的知识(平方根、立方根)进行类比,得出次方根的概念,进而学习根式的性质. ( http: / / www. )3.情感、态度与价值观
(1)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯; ( http: / / www. )(2)培养学生认识、接受新事物的能力.
(二)教学重点、难点 ( http: / / www. )1.教学重点:(1)根式概念的理解;
 (2)掌握并运用根式的运算性质. ( http: / / www. )2.教学难点:根式概念的理解.
(三)教学方法 ( http: / / www. )本节概念性较强,为突破根式概念的理解这一难点,使学生易于接受,故可以从初中已经熟悉的平方根、立方根的概念入手,由特殊逐渐地过渡到一般的n次方根的概念,在得出根式概念后,要引导学生注意它与n次方根的关系,并强调说明根式是n次方根的一种表示形式,加强学生对概念的理解,并引导学生主动参与了教学活动.故本节课可以采用类比发现,学生合作交流,自主探索的教学方法.
(四)教学过程
教学 ( http: / / www. )环节 教学内容 师生互动 设计意图
提出问题 先让我们一起来看两个问题(见教材P52—53). ( http: / / www. )在问题2中,我们已经知道…是正整数指数幂,它们的值分别为….那么,的意义是什么呢?这正是我们将要学习的知识.下面,我们一起将指数的取值范围从整数推广到实数.为此,需要先学习根式的知识. ( http: / / www. ) 老师提出问题,学生思考回答. 由实际问题引入,激发学生的学习积极性.
复习 ( http: / / www. )引入 什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?归纳:在初中的时候我们已经知道:若,则叫做a的平方根.同理,若,则叫做a的立方根. ( http: / / www. )根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数,如4的平方根为,负数没有平方根,一个数的立方根只有一个,如―8的立方根为―2;零的平方根、立方根均为零. 师生共同回顾初中所学过的平方根、立方根的定义. 学习新知前的简单复习,不仅能唤起学生的记忆,而且为学习新课作好了知识上的准备.
形成 ( http: / / www. )概念 类比平方根、立方根的概念,归纳出n次方根的概念. ( http: / / www. )n次方根:一般地,若,则x叫做a的n次方根(throot),其中n >1,且n∈N*, 当n为偶数时,正数a的n次方根中,正数用表示,如果是负数,用表示. ( http: / / www. )当n为奇数时,a的n次方根用符号表示,叫做根式.其中n称为根指数,a为被开方数. ( http: / / www. ) 老师点拨指导,由学生观察、归纳、概括出n次方根的概念. 由特殊到一般,培养学生的观察、归纳、概括的能力.
深化概念 类比平方根、立方根,猜想:当n为偶数时,一个数的n次方根有多少个?当n为奇数时呢?零的n次方根为零,记为举例:16的次方根为,等等,而的4次方根不存在.小结:一个数到底有没有n次方根,我们一定先考虑被开方数到底是正数还是负数,还要分清n为奇数和偶数两种情况.根据n次方根的意义,可得:肯定成立,表示an的n次方根,等式一定成立吗?如果不一定成立,那么等于什么?让学生注意讨论,n为奇偶数和a的符号,充分让学生分组讨论.通过探究得到:n为奇数,n为偶数, 如小结:当n为偶数时,化简得到结果先取绝对值,再在绝对值算具体的值,这样就避免出现错误. 让学生对n为奇偶数进行充分讨论.通过探究得到:n为奇数,;n为偶数, .举出实例,加深理解. 通过分n为奇数和偶数两种情况讨论,掌握n次方根概念,培养学生掌握知识的准确性、全面性,同时培养学生的分类讨论的能力
应用举例 例题:求下列各式的值 思考:是否成立,举例说明.课堂练习:1. 求出下列各式的值 ;;.2.若.3.计算 学生思考,口答,教师版演、点评.例题分析:当n为偶数时,应先写,然后再去绝对值.解:= —8;=|—10|=10; = ;=课堂练习1.解:(1)—7;(2);(3)=.2.解:.3.解:原式=—8+1+=. 通过例题的解答,进一步理解根式的概念、性质.
归纳总结 1.根式的概念:若n>1且,则.为偶数时,;2.掌握两个公式: 先让学生独自回忆,然后师生共同总结. 通过小结使学生加强对知识的记忆,加深对数学思想方法的理解,养成总结的好习惯.
课后作业 作业:2.1 第一课时 习案 学生独立完成 巩固新知提升能力
备选例题
例1 计算下列各式的值.
(1);
(2) (,且)
(3)(,且)
【解析】(1).
(2)当为奇数时,=;
当为偶数时,=.
(3)=,
当时,=;
当时,=.
【小结】(1)当n为奇数时,;
当n为偶数时,
(2)不注意n的奇偶性对式子值的影响,是导致错误出现的一个重要原因.故要在理解的基础上,记准、记熟、会用、活用.
例2 求值:
【分析】需把各项被开方数变为完全平方形式,然后再利用根式运算性质;
【解析】
【小结】开方后带上绝对值,然后根据正负去掉绝对值.
( http: / / www. / )第10课时 函数模型及其应用
1.抽象概括:研究实际问题中量,确定变量之间的主、被动关系,并用x、y分别表示问题中的变量;
2.建立函数模型:将变量y表示为x的函数,在中学数学内,我们建立的函数模型一般都是函数的解析式;
3.求解函数模型:根据实际问题所需要解决的目标及函数式的结构特点正确选择函数知识求得函数模型的解,并还原为实际问题的解.
这些步骤用框图表示是:
例1. 如图所示,在矩形ABCD中,已知AB=a,BC=b(b<a),在AB,AD,CD,CB上分别截取AE,AH,CG,CF都等于x,当x为何值时,四边形EFGH的面积最大?并求出最大面积.
解: 设四边形EFGH的面积为S,
则S△AEH=S△CFG=x2,
S△BEF=S△DGH=(a-x)(b-x),
∴S=ab-2[2+(a-x)(b-x)]
=-2x2+(a+b)x=-2(x-2+
由图形知函数的定义域为{x|0<x≤b}.
又0<b<a,∴0<b<,若≤b,即a≤3b时,
则当x=时,S有最大值;
若>b,即a>3b时,
S(x)在(0,b]上是增函数,
此时当x=b时,S有最大值为
-2(b-)2+=ab-b2,
综上可知,当a≤3b时,x=时,
四边形面积Smax=,
当a>3b时,x=b时,四边形面积Smax=ab-b2.
变式训练1:某商人将进货单价为8元的某种商品按10元一个销售时,每天可卖出100个,现在他采用提高售价,减少进货量的办法增加利润,已知这种商品销售单价每涨1元,销售量就减少10个,问他将售价每个定为多少元时,才能使每天所赚的利润最大?并求出最大值.
解:设每个提价为x元(x≥0),利润为y元,每天销售总额为(10+x)(100-10x)元,
进货总额为8(100-10x)元,
显然100-10x>0,即x<10,
则y=(10+x)(100-10x)-8(100-10x)=(2+x)(100-10x)=-10(x-4)2+360 (0≤x<10).
当x=4时,y取得最大值,此时销售单价应为14元,最大利润为360元.
例2. 据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度
v(km/h)与时间t(h)的函数图象如图所示,过线段OC上一点T(t,0)作横轴
的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km).(1)当t=4时,求s的值;
(2)将s随t变化的规律用数学关系式表示出来;
(3)若N城位于M地正南方向,且距M地650 km,试判断这
场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将
侵袭到N城?如果不会,请说明理由.
解:(1)由图象可知:
当t=4时,v=3×4=12,
∴s=×4×12=24.
(2)当0≤t≤10时,s=·t·3t=t2,
当10<t≤20时,s=×10×30+30(t-10)=30t-150;
当20<t≤35时,s=×10×30+10×30+(t-20)×30-×(t-20)×2(t-20)=-t2+70t-550.
综上可知s=
(3)∵t∈[0,10]时,smax=×102=150<650.
t∈(10,20]时,smax=30×20-150=450<650.
∴当t∈(20,35]时,令-t2+70t-550=650.
解得t1=30,t2=40,∵20<t≤35,
∴t=30,所以沙尘暴发生30 h后将侵袭到N城.
变式训练2:某工厂生产一种机器的固定成本(即固定投入)为0.5万元,但每生产100台,
需要加可变成本(即另增加投入)0.25万元.市场对此产品的年需求量为500台,销售的收入函数为R(x)=5x-(万元)(0≤x≤5),其中x是产品售出的数量(单位:百台).
(1)把利润表示为年产量的函数;
(2)年产量是多少时,工厂所得利润最大?
(3)年产量是多少时,工厂才不亏本?
解:(1)当x≤5时,产品能售出x百台;
当x>5时,只能售出5百台,
故利润函数为L(x)=R(x)-C(x)
=
(2)当0≤x≤5时,L(x)=4.75x--0.5,
当x=4.75时,L(x)max=10.781 25万元.
当x>5时,L(x)=12-0.25x为减函数,
此时L(x)<10.75(万元).∴生产475台时利润最大.
(3)由
得x≥4.75-=0.1(百台)或x<48(百台).
∴产品年产量在10台至4 800台时,工厂不亏本.
例3. 某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y元,已知甲、乙两用户该月用水量分别为5x,3x吨.
(1)求y关于x的函数;
(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.
解:(1)当甲的用水量不超过4吨时,即5x≤4,乙的用水量也不超过4吨,
y=(5x+3x)×1.8=14.4x;
当甲的用水量超过4吨,乙的用水量不超过4吨时,
即3x≤4且5x>4,
y=4×1.8+3x×1.8+3×(5x-4)=20.4x-4.8.
当乙的用水量超过4吨时,
即3x>4,y=8×1.8+3(8x-8)=24x-9.6,
所以y=
(2)由于y=f(x)在各段区间上均为单调递增,
当x∈[0,]时,y≤f()<26.4;
当x∈(,]时,y≤f()<26.4;
当x∈(,+∞)时,令24x-9.6=26.4,解得x=1.5,
所以甲户用水量为5x=7.5吨,
付费S1=4×1.8+3.5×3=17.70(元);
乙户用水量为3x=4.5吨,
付费S2=4×1.8+0.5×3=8.70(元).
变式训练3:1999年10月12日“世界60亿人口日”,提出了“人类对生育的选择将决定世界未来”的主题,控制人口急剧增长的紧迫任务摆在我们的面前.
(1)世界人口在过去40年内翻了一番,问每年人口平均增长率是多少?
(2)我国人口在1998年底达到12.48亿,若将人口平均增长率控制在1%以内,我国人口在2008年底至多有多少亿?
以下数据供计算时使用:
数N 1.010 1.015 1.017 1.310 2.000
对数lgN 0.004 3 0.006 5 0.007 3 0.117 3 0.301 0
数N 3.000 5.000 12.48 13.11 13.78
对数lgN 0.477 1 0.699 0 1.096 2 1.117 6 1.139 2
解:(1)设每年人口平均增长率为x,n年前的人口数为y,
则y·(1+x)n=60,则当n=40时,y=30,
即30(1+x)40=60,∴(1+x)40=2,
两边取对数,则40lg(1+x)=lg2,
则lg(1+x)==0.007 525,
∴1+x≈1.017,得x=1.7%.
(2)依题意,y≤12.48(1+1%)10?,
得lgy≤lg12.48+10×lg1.01=1.139 2,
∴y≤13.78,故人口至多有13.78亿.
答 每年人口平均增长率为1.7%,2008年人口至多有13.78亿.
解决函数应用问题应着重注意以下几点:
1.阅读理解、整理数据:通过分析、画图、列表、归类等方法,快速弄清数据之间的关系,数据的单位等等;
2.建立函数模型:关键是正确选择自变量将问题的目标表示为这个变量的函数,建立函数模型的过程主要是抓住某些量之间的相等关系列出函数式,不要忘记考察函数的定义域;
3.求解函数模型:主要是计算函数的特殊值,研究函数的单调性,求函数的值域、最大(小)值等,注意发挥函数图象的作用.
4.还原评价:应用问题不是单纯的数学问题,既要符合数学学科又要符合实际背景,因于解出的结果要代入原问题进行检验、评判最后作出结论,作出回答.
( http: / / www. / )
基础过关
实际问题
函数模型
抽象概括
实际问题的解
函数模型的解
还原说明
运用函数的性质
典型例题
小结归纳3.1.3 用二分法求方程的近似解
(一)教学目标 ( http: / / www. )1.知识与技能
掌握应用二分法求方程近似解的原理与步骤,会用二分法求方程的近似解. ( http: / / www. )2.过程与方法
体会通过取区间中点,应用零点存在性定理,逐步缩小零点所属区间的范围,而获得零点的近似值即方程的近似解的过程中理解二分法的基本思想,渗透算法思想. ( http: / / www. )3.情感、态度及价值观
在灵活调整算法,在由特殊到一般的认识过程中,养成良好的学习品质和思维品质,享受数学的无穷魅力. ( http: / / www. )(二)教学重点与难点
重点:用二分法求方程的近似解; ( http: / / www. )难点:二分法原理的理解
(三)教学方法 ( http: / / www. )讲授法与合作交流相结合,通过老师恰当合理的讲授,师生之间默切的合作交流,认识二分法、理解二分法的实质,从而能应用二分法研究问题,达到知能有机结合的最优结果.
(四)教学过程
教学环节 教学内容 师生互动 设计意图
提出问题引入课题 1问题:一元二次方程可用判别式判定根的存在性,可用求根公式求方程的根.但对于一般的方程,虽然可用零点存在性定理判定根的存在性,而没有公式. 求根:如何求得方程的根呢? ( http: / / www. )①函数f (x) = lnx + 2x – 6在区间(2,3)内有零点.②如果能够将零点所在的范围尽量缩小,那么在一定精确度的要求下,我们可以得到零点的近似值. ( http: / / www. )③通过“取中点”的方法逐步缩小零点所在的范围.④取区间(2,3)的中点2.5,用计算器算得f (2.5)≈–0.084.因为f (2.5)·f (3)<0,所以零点在区间(2.5,3)内.再取内间(2.5,3)的中点2.75,用计算器算得f (2.75)≈0.512.因为f (2.5)·f (2.75)<0,所以零点在区间(2.5,2.75)内. ( http: / / www. )⑤由于(2,3) (2.5,3) (2.5,2.75),所以零点所在的范围确实越来越小了. ( http: / / www. )⑥例如,当精确度为0.01时,由于|2.539 062 5 – 2.531 25| = 0.007 812 5<0.01,所以,我们可以将x = 2.531 25作为函数f (x) = lnx + 2x – 6零点的近似值,也即方程lnx + 2x – 6 = 0根的近似值. ( http: / / www. ) 师:怎样求方程lnx + 2x – 6 = 0的根.引导:观察图形 ( http: / / www. )生:方程的根在(2,3)区间内 ( http: / / www. )师:能否用缩小区间的方法逼近方程的根生:应该可用 ( http: / / www. )师:我们现用一种常见的数学方法—二分法,共同探究已知方程的根.师生合作,借助计算机探求方程根的近似值. ( http: / / www. )区间中点的值中点函数近似值(2,3)2.5–0.084(2.5,3)2.750.512(2.5,2.75)2.6250.215(2.5,2.625)2.56250.066(2.5,2.5625)2.53125–0.009(2.53125,2.5625)2.5468750.029(2.53125,2.546875)2.53906250.010(2.53125,2.5390625)2.535156250.001 由旧到新设疑、析疑导入课题,实例分析了解二分法、进一步师生合作尝试二分法.
形成概念 1.对于区间[a,b]上连续不断且f (a)·f (b)<0的函数y = f (x),通过不断地把函数f (x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.2.给定精确度,用二分法求函数f (x)零点近似值的步聚如下: ( http: / / www. )(1)确定区间[a,b],验证f (a)·f (b)<0,给定精确度;(2)求区间(a,b)的中点c; ( http: / / www. )(3)计算f (c);①若f (c) = 0,则c就是函数的零点; ( http: / / www. )②若f (a)·f (c)<0,则令b = c(此时零点x0∈(a,c));③若f (c)·f (b)<0,则令a = c(此时零点x0∈(c,b)). ( http: / / www. )(4)判断是否达到精确度:即若|a – b|<,则得到零点近似值a(或b);否则重复2~4. 师生合作回顾实例:求方程lnx + 2x – 6 = 0的近似解(精确度0.01)的操作过程.掌握二分法,总结应用二分法的步骤 ( http: / / www. )师:讲授二分法的定义.生:总结应用二分法的步骤. ( http: / / www. )学生交流总结,学生代表口述步骤,老师完善并板书. 由特殊到一般形成概念,归纳总结应用二分法的步骤.
应用举例 例1 借助计算器或计算机用二分法求方程2x + 3x = 7的近似解(精确度0.1). 师生合作应用二分法,遵循二分法的步骤求解,并借助函数图象检验. ( http: / / www. )例1 解:原方程即2x + 3x –7 = 0,令f (x) = 2x + 3x –7,用计算器或计算机作出函数f (x) = 2x + 3x –7的对应值表与图象x01234f(x)=2x+3x–7–6–231021x5678f(x)=2x+3x–74075142273 ( http: / / www. )观察图或表可知f(1)·f(2)<0,说明这个函数在区间(1,2)内有零点x0.取区间(1,2)的中点x1=1.5,用计算器算得f(1.5)≈0.33.因为f(1)·f(1.5)<0,所以x0∈(1,1.5). ( http: / / www. )再取(1,1.5)的中点x 2=1.25,用计算器算得f(1.25)≈–0.87.因为f(1.25)·f(1.5)<0,所以x0∈(1.25,1.5).同理可得x0∈(1.375,1.5),x0∈(1.375,1.4375)由于|1.375–1.4375| = 0.0625<0.1,所以,原方程的近似解可取为1.4375. 尝试体验二分法,培养应用二分法从而固化基本理论技能
巩固练习 1.借助计算器或计算机,用二分法求函数f(x) = x3 + 1.1x2 + 0.9x– 1.4在区间(0,1)内的零点(精确度0.1).2.借助计算器或计算机,用二分法求方程x = 3 – lgx在区间(2,3)内的近似解(精确度0.1). 学生动手尝试练习,师生借助计算机合作完成求解.1.解:由题设可知f(0)= –1.4<0,f(1)=1.6>0,于是f(0)·f(1)<0,所以,函数f(x)在区间(0,1)内有一个零点.下面用二分法求函数f(x) = x3 + 1.1x2 + 0.9x– 1.4在区间(0,1)内的零点取区间(0,1)的中点x1=0.5,用计算器可算得f(0.5)= –0.55.因为f(0.5)·f(1)<0,所以x0∈(0.5,1).再取区间(0.5,1)的中点x2=0.75,用计算器可算得f(0.75)≈0.32.因为f(0.5)·f(0.75)<0,所以x0∈(0.5,0.75).同理可得x0∈(0.625,0.75),x0∈(0.625,0.6875),x0∈(0.65625,0.6875)由于|0.6875–0.65625|=0.3125<0.1,所以原方程的近似解可取为0.65625.2.解原方程即x + lgx– 3 = 0,令f(x) = x + lgx– 3,用计算器可算得f(2)≈–0.70,f(3)≈0.48,于是f(2)· f(3)<0,所以,这个方程在区间(2,3)内有一个解.下面用二分法求方程x = 3 – lgx在区间(2,3)内的近似解.取区间(2,3)的中点x1 = 2.5,用计算器可算得f(2.5)≈–0.10.因为f(2.5)·f(3)<0,所以x0 ∈(2.5,3).再取区间(2.5,3)的中点x2 = 2.75,用计算器可算得f(2.75)≈0.19.因为f(2.5)·f(2.75)<0,所以x0 ∈(2.5,2.75).同理可得x0 ∈(2.5,2.625),x0 ∈(2.5625,2.625).由于|2.625–2.5625|=0.0625<0.1,所以原方程的近似解可取为2.5625. 进一步体验二分法,巩固应用二分法的方法与技巧及注意事项.
课后练习 3.1 第三课时 习案 学生独立完成 巩固二分法应用技能
备选例题
例1 用二分法求函数f (x) = x3 – 3的一个正实数零点(精确到0.1).
【解析】由于f (1) = –2<0,f (2) = 5>0,因此可以确定区间[1,2]作为计算的初始区间,用二分法逐步计算,列表如下:
端点或中点的横坐标 计算端点或中点的函数值 定区间
a0 = 1,b0 = 2 f(1)= –2,f(2)=5 [1,2]
f (x0) = 0.375>0 [1,1.5]
f (x1) = –1.0469<0 [1.25,1.5]
f (x2) = –0.4004<0 [1.375,1.5]
f (x3) = –0.0295<0 [1.4375,1.5]
f (x4) = 0.1684>0 [1.4375,1.46875]
f (x5)>0 [1.4375,1.453125]
x6 = 1.4453125 f (x6)>0 [1.4375,1.4453125]
由上表的计算可知区间[1.4375,1.4453125]的左、右端点精确到0.1所取的近似值都是1.4,所以1.4可作为所求函数的一个正实数零点的近似值.
( http: / / www. / )

≠2.1.2 指数函数及其性质(二)
(一)教学目标
1.知识与技能:
(1)理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质.
(2)体会具体到一般数学讨论方式及数形结合的思想;
2.过程与方法:
展示函数图象,让学生通过观察,进而研究指数函数的性质.
3.情感、态度与价值观
(1)让学生了解数学来自生活,数学又服务于生活的哲理.
(2)培养学生观察问题,分析问题的能力.
(二)教学重点、难点
1.教学重点:指数函数的概念和性质及其应用.
2.教学难点:指数函数性质的归纳,概括及其应用.
(三)教学方法
采用观察、分析、归纳、抽象、概括,自主探究,合作交流的教学方法,利用多媒体教学,使学生通过观察图象,总结出指数函数的性质,调动学生参与课堂教学的主动性和积极性.从而培养学生的观察能力,概括能力.
(四)教学过程
教学环节 教学内容 师生互动 设计意图
复习引入 复习指数函数的概念和图象.1.指数函数的定义一般地,函数(>0且≠1)叫做指数函数,其中是自变量,函数的定义域为R.2.指数函数的图象问题:根据函数的图象研究函数的定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 生:复习回顾师:总结完善 复习旧知,为新课作铺垫.
形成概念 图象特征>10<<1向轴正负方向无限延伸图象关于原点和轴不对称函数图象都在轴上方函数图象都过定点(0,1)自左向右,图象逐渐上升自左向右,图象逐渐下降在第一象限内的图象纵坐标都大于1在第一象限内的图象纵坐标都小于1在第二象限内的图象纵坐标都小于1在第二象限内的图象纵坐标都大于1 师:引导学生观察指数函数的图象,归纳出图象的特征.生:从渐进线、对称轴、特殊点、图象的升降等方面观察指数函数的图象,归纳出图象的特征.师:帮助学生完善. 通过分析图象,得到图象特征,为进一步 得到指数函数的性质作准备.
概念深化 函数性质>10<<1函数的定义域为R非奇非偶函数函数的值域为R+=1增函数减函数>0,>1>0,<1<0,<1<0,>1问题:指数函数(>0且≠1),当底数越大时,函数图象间有什么样的关系. 生:从定义域、值域、定点、单调性、范围等方面研究指数函数的性质.师:帮助学生完善.师:画出几个提出问题.生:画出几个底数不同的指数函数图象,得到指数函数(>0且≠1),当底数越大时,在第一象限的函数图象越高.(底大图高) 获得指数函数的性质.明确底数是确定指数函数的要素.
应用举例 例1 求下列函数的定义域、值域(1)(2)课堂练习(P64 2)例2(P62例7)比较下列各题中的个值的大小(1)1.72.5 与 1.73( 2 )与( 3 ) 1.70.3 与 0.93.1课堂练习:1.已知按大小顺序排列;2. 比较(>0且≠0).例3(P63例8)截止到1999年底,我们人口哟13亿,如果今后,能将人口年平均均增长率控制在1%,那么经过20年后,我国人口数最多为多少(精确到亿)? 例1分析:此题要利用指数函数的定义域、值域,并结合指数函数的图象.解:(1)由得所以函数定义域为.由得,所以函数值域为.(2)由得所以函数定义域为.由得,所以函数值域为.例2解法1:用数形结合的方法,如第(1)小题,用图形计算器或计算机画出的图象,在图象上找出横坐标分别为2.5, 3的点,显然,图象上横坐标就为3的点在横坐标为2.5的点的上方,所以 .解法2:用计算器直接计算: 所以,解法3:由函数的单调性考虑因为指数函数在R上是增函数,且2.5<3,所以,仿照以上方法可以解决第(2)小题 .注:在第(3)小题中,可以用解法1,解法2解决,但解法3不适合 .由于1.70.3=0.93.1不能直接看成某个函数的两个值,因此,在这两个数值间找到1,把这两数值分别与1比较大小,进而比较1.70.3与0.93.1的大小 .练习答案1. ;2. 当时,则.当时,则.分析:可以先考试一年一年增长的情况,再从中发现规律,最后解决问题:1999年底 人口约为13亿经过1年 人口约为13(1+1%)亿经过2年 人口约为13(1+1%)(1+1%)=13(1+1%)2亿经过3年 人口约为13(1+1%)2(1+1%)=13(1+1%)3亿经过年 人口约为13(1+1%)亿经过20年 人口约为13(1+1%)20亿解:设今后人口年平均增长率为1%,经过年后,我国人口数为亿,则当=20时,答:经过20年后,我国人口数最多为16亿.小结:类似上面此题,设原值为N,平均增长率为P,则对于经过时间后总量,>0且≠1)的函数称为指数型函数 . 掌握指数函数的应用.
归纳总结 本节课研究了指数函数性质及其应用,关键是要记住>1或0<<1时的图象,在此基础上研究其性质 .本节课还涉及到指数型函数的应用,形如(a>0且≠1). 学生先自回顾反思,教师点评完善. 形成知识体系.
课后作业 作业:2.1 第五课时 习案 学生独立完成 巩固新知提升能力
备选例题
例1 求下列函数的定义域与值域
(1);
(2);
(3);
【分析】由于指数函数且的定义域是,所以函数(且)与函数的定义域相同.利用指数函数的单调性求值域.
【解析】(1)令得
定义域为且.

∴的值域为且.
(2)定义域为.
≥0,

故的值域为≥.
(3)定义域为.
且.
故的值域为.
【小结】求与指数函数有关的函数的值域时,要注意到充分考虑并利用指数函数本身的要求,并利用好指数函数的单调性.
例2用函数单调性定义证明a>1时,y = ax是增函数.
【解析】设x1,x2∈R且x 1<x2,并令x2 = x1 + h (h>0,h∈R),
则有,
∵a>1,h>0,∴,
∴,即
故y = ax (a>1)为R上的增函数,
同理可证0<a<1时,y = ax是R上的减函数.
( http: / / www. / )1.3.3 函数的奇偶性
(一)教学目标 ( http: / / www. )1.知识与技能:
使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性. ( http: / / www. )2.过程与方法:
通过设置问题情境培养学生判断、推断的能力. ( http: / / www. )3.情感、态度与价值观:
通过绘制和展示优美的函数图象来陶冶学生的情操. 通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质. ( http: / / www. )(二)教学重点与难点
重点:函数的奇偶性的概念; ( http: / / www. )难点:函数奇偶性的判断.
(三)教学方法 ( http: / / www. )应用观察、归纳、启发探究相结合的教学方法,通过设置问题引导学生观察分析归纳,形成概念,使学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解. 对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固.
(四)教学过程
教学环节 教学内容 师生互动 设计意图
复习引入 复习在初中学习的轴对称图形和中心对称图形的定义 教师提出问题,学生回答. 为学生认识奇、偶函数的图象特征做好准备.
概念形成 1.要求学生同桌两人分别画出函数f (x) =x3与g (x) = x2的图象. ( http: / / www. )2.多媒体屏幕上展示函数f (x) =x3和函数g (x) = x2的图象,并让学生分别求出x =±3,x =±2,x =±,… 的函数值,同时令两个函数图象上对应的点在两个函数图象上闪现,让学生发现两个函数的对称性反映到函数值上具有的特性:f (–x) = – f (x),g (–x) = g (x). 然后通过解析式给出证明,进一步说明这两个特性对定义域内的任意一个x都成立. ( http: / / www. )3.奇函数、偶函数的定义:奇函数:设函数y = f (x)的定义域为D,如果对D内的任意一个x,都有 ( http: / / www. )f (–x) = – f (x),则这个函数叫奇函数. ( http: / / www. )偶函数:设函数y = g (x)的定义域为D,如果对D内的任意一个x,都有g (– x) = – g (x), ( http: / / www. )则这个函数叫做偶函数. 1.教师指导,学生作图,学生作完图后教师提问:观察我们画出的两个函数的图象,分别具有怎样的对称性?学生回答:f (x) =x3关于原点成中心对称图形;g (x) = x2关于y轴成轴对称图形. ( http: / / www. )2.老师边让学生计算相应的函数值,边操作课件,引导学生发现规律,总结规律,然后要求学生给出证明;学生通过观察和运算逐步发现两个函数具有的不同特征:f (–x) = – f (x), ( http: / / www. )g (–x) = – g (x).3.教师引导归纳:这时我们称函数f (x) = x3这样的函数为奇函数,像函数g (x) = x2这样的函数为偶函数,请同学们根据对奇函数和偶函数的初步认识加以推广,给奇函数和偶函数分别下一个定义. ( http: / / www. )学生讨论后回答,然后老师引导使定义完善. 在屏幕展示奇函数和偶函数的定义.老师:根据定义,哪些同学能举出另外一些奇函数和偶函数的例子? ( http: / / www. )学生:f (x) = ,f (x) = –x6 – 4x4,…. 1.要求学生动手作图以锻炼学生的动手实践能力,为下一步问题的提出做好准备. 并通过问题来引导学生从形的角度认识两个函数各自的特征. ( http: / / www. )2.通过特殊值让学生认识两个函数各自对称性实质:是自变量互为相反数时,函数值互为相反数和相等这两种关系.3.通过引例使学生对奇函数和偶函数的形和数的特征有了初步的认识,此时再让学生给奇函数和偶函数下定义应是水到渠成. ( http: / / www. )
概念深化 (1)强调定义中“任意”二字,说明函数的奇偶性在定义域上的一个整体性质,它不同于函数的单调性 .(2)奇函数与偶函数的定义域的特征是关于原点对称. ( http: / / www. )(3)奇函数与偶函数图象的对称性:如果一个函数是奇函数,则这个函数的图象以坐标原点为对称中心的中心对称图形. 反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数. ( http: / / www. )如果一个函数是偶函数,则它的图形是以y轴为对称轴的轴对称图形;反之,如果一个函数的图象关于y轴对称,则这个函数是偶函数. 教师设计以下问题组织学生讨论思考回答.问题1:奇函数、偶函数的定义中有“任意”二字,说明函数的奇偶性是怎样的一个性质?与单调性有何区别? ( http: / / www. )问题2:–x与x在几何上有何关系?具有奇偶性的函数的定义域有何特征?问题3:结合函数f (x) =x3的图象回答以下问题: ( http: / / www. )(1)对于任意一个奇函数f (x),图象上的点P (x,f (x))关于原点对称点P′的坐标是什么?点P′是否也在函数f (x)的图象上?由此可得到怎样的结论.(2)如果一个函数的图象是以坐标原点为对称中心的中心对称图形,能否判断它的奇偶性? ( http: / / www. )学生通过回答问题3 可以把奇函数图象的性质总结出来,然后老师让学生自己研究一下偶函数图象的性质. 通过对三个问题的探讨,引导学生认识到:(1)函数的奇偶性 是函数在定义域上的一个整体性质,它不同于单调性.(2)函数的定义域关于原点对称是一个函数为奇函数或偶函数的必要条件.(3)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.
应用举例 例1 判断下列函数的奇偶性; ( http: / / www. )(1)f (x) = x + x3 +x5;(2)f (x) = x2 +1; ( http: / / www. )(3)f (x) = x + 1;(4)f (x) = x2,x∈[–1,3]; ( http: / / www. )(5)f (x) = 0.学生练习: ( http: / / www. )判断下列函数的是否具有奇偶性:(1) f (x) = x + x3; ( http: / / www. )(2) f (x) = – x2;(3) h (x) = x3 +1; ( http: / / www. )(4) k (x) =,x[–1,2];(5) f (x) = (x + 1) (x – 1); ( http: / / www. )(6) g (x) = x (x + 1);(7) h (x) = x +; ( http: / / www. )(8) k (x) =.例2 研究函数y =的性质并作出它的图象. ( http: / / www. )学生练习:1.判断下列论断是否正确: ( http: / / www. )(1) 如果一个函数的定义域关于坐标原点对原对称,则这个函数关于原点对称;则这个函数为奇函数;(2)如果一个函数为偶函数,则它的定义关于坐标原点对称, ( http: / / www. )(3)如果一个函数定义域关于坐标原点对称,则这个函数为偶函数;(4)如果一个函数的图象关于y轴对称,则这个函数为偶函数.2.如果f (0) = a≠0,函数f (x)可以是奇函数吗?可以是偶函数吗?为什么?3.如果函数f (x)、g (x)为定义域相同的偶函数,试问F (x) =f (x) + g (x)是不是偶函数?是不是奇函数?为什么?4.如图,给出了奇函数y = f (x)的局总图象,求f (– 4).5.如图,给出了偶函数y = f (x)的局部图象,试比较f (1)与 f (3) 的大小. 1.选例1的第(1)小题板书来示范解题的步骤,其他例题让几个学生板演,其余学生在下面自己完成,针对板演的同学所出现的步骤上的问题进行学生做好总结归纳.2.例2可让学生来设计如何研究函数的性质和图象的方案,并根据学生提供的方案,点评方案的可行性,并比较哪种方案简单.3.做完例1和例2后要求学生做练习,及时巩固. 在学生练习过程中,教师做好巡视指导.例1 解答案(1)奇函数(2)偶函数(3)非奇非偶函数(4)非奇非偶函数(5)既奇又偶函数学生练习答案(1)奇函数(2)偶函数(3)非奇非偶函数(4)非奇非偶函数(5)偶函数(6)非奇非偶函数(7)奇函数(8)偶函数例2 偶函数(图略)学生练习1.(1)错(2)错(3)错(4)对2.不能为奇函数但可以是偶函数3.偶函数∵f (–x ) = f (x)g (–x) = g (x)∴F (–x) = F (x)4.f (–4) = – f (4) = –2.5.∵f (–3)>f (–1)又f (–3) = f (3)f (–1) = f (1)∴f (3)>f (1) 1.通过例1解决如下问题:①根据定义判断一个函数是奇函数还是偶函数的方法和步骤是:第一步先判断函数的定义域是否关于原点对称;第二步判断f (–x) = f (x)还是判断f (–x) = – f (x).②通过例1中的第(3)小题说明判断函数既不是奇函数也不是偶函数.③ 例1中的第(4)小题说明判断函数的奇偶性先要看一下定义域是否关于原点对称.④ f (x) = 0既不奇函数又是偶函数的函数是函数值为0的常值函数. 前提是定义域关于原点对称.⑤总结:对于一个函数来说,它的奇偶性有四种可能:是奇函数但不是偶函数;是偶函数但不是奇函数;既是奇函数又是偶函数;既不是奇函数也不是偶函数.2.对于例2主要让学生体会学习了函数的奇偶性后为研究函数的性质带来的方便. 在此问题的处理上要先求一下函数的定义域,这是研究函数性质的基础,然后判断函数图象的对称性,再根据奇、偶函数在y轴一侧的图象和性质就可以知道在另一侧的图象和性质.
归纳总结 从知识、方法两个方面来对本节课的内容进行归纳总结. 让学生谈本节课的收获,并进行反思. 关注学生的自主体验,反思和发表本堂课的体验和收获.
布置作业 1.3第三课时 习案. 学生独立完成 通过分层作业使学生进一步巩固本节课所学内容. 并为学有余力和学习兴趣浓厚的学生提供进一步学习的机会.
备选例题.
例1 判断下列函数的奇偶性:
(1)f (x) =;
(2)f (x) =.
解析:(1)函数的定义域是(–∞,+∞),将函数式分子有理化,得
f (x) =
=,
f (–x) =
=
= – f (x),
∴f (x)是奇函数.
(2)函数定义域为(–∞,+∞),
f (–x) === f (x).
∴f (x)为偶函数.
例2 (1)设f (x)是偶函数,g (x)是奇函数,且f (x) + g (x) =,求函数f (x),g (x)的解析式;
(2)设函数f (x)是定义在(–∞,0)∪(0,+∞)上的奇函数,又f (x)在(0,+∞)上是减函数,且f (x)<0,试判断函数F (x) =在(–∞,0)上的单调性,并给出证明.
解析:(1)∵f (x)是偶函数,g (x)是奇函数,
∴f (–x) = f (x),g (– x) = –g (x),
由f (x) + g (x) = ①
用–x代换x得f (–x) + g (– x) =,
∴f (x) –g (x) =, ②
(① + ②)÷2 = 得f (x) =; (① – ②)÷2 = 得g (x) =.
(2)F (x)在(–∞,0)是中增函数,以下进行证明:
设x1,x2?(–∞,0),且x1<x2.
则△x = x2 – x1>0且–x1,–x2?(0,+∞),
且–x1>– x2,
则△(–x) = (–x2) – (–x1) = x1–x2 = –△x<0,
∵f (x)在(0,+∞)上是减函数,∴f (–x2) – f (–x1)>0 ①
又∵f (x)在 (–∞,0)∪(0,+∞)上是奇函数,∴f (–x1) = – f (x1),f (–x2) = – f (x2),
由①式得 – f (x2) + f (x1) >0,
即f (x1) – f (x2)>0. 当x1<x2<0时,F (x2) – F (x1) =,
又∵f (x) 在(0,+∞)上总小于0,
∴f (x1) = – f (–x1)>0,f (x2) = – f (–x2)>0,f (x1)·f (x2)>0,
又f (x1) – f (x2)>0,∴F (x2) – F (x1)>0且△x = x2 – x1>0,
故F (x) =在(–∞,0)上是增函数.
( http: / / www. / )
x
y
O
4
2
x
y
O
– 3
2
– 13.1.3 用二分法求方程的近似解
(一)教学目标
1.知识与技能
掌握应用二分法求方程近似解的原理与步骤,会用二分法求方程的近似解.
2.过程与方法
体会通过取区间中点,应用零点存在性定理,逐步缩小零点所属区间的范围,而获得零点的近似值即方程的近似解的过程中理解二分法的基本思想,渗透算法思想.
3.情感、态度及价值观
在灵活调整算法,在由特殊到一般的认识过程中,养成良好的学习品质和思维品质,享受数学的无穷魅力.
(二)教学重点与难点
重点:用二分法求方程的近似解;
难点:二分法原理的理解
(三)教学方法
讲授法与合作交流相结合,通过老师恰当合理的讲授,师生之间默切的合作交流,认识二分法、理解二分法的实质,从而能应用二分法研究问题,达到知能有机结合的最优结果.
(四)教学过程
教学环节 教学内容 师生互动 设计意图
提出问题引入课题 1问题:一元二次方程可用判别式判定根的存在性,可用求根公式求方程的根.但对于一般的方程,虽然可用零点存在性定理判定根的存在性,而没有公式. 求根:如何求得方程的根呢?①函数f (x) = lnx + 2x – 6在区间(2,3)内有零点.②如果能够将零点所在的范围尽量缩小,那么在一定精确度的要求下,我们可以得到零点的近似值.③通过“取中点”的方法逐步缩小零点所在的范围.④取区间(2,3)的中点2.5,用计算器算得f (2.5)≈–0.084.因为f (2.5)·f (3)<0,所以零点在区间(2.5,3)内.再取内间(2.5,3)的中点2.75,用计算器算得f (2.75)≈0.512.因为f (2.5)·f (2.75)<0,所以零点在区间(2.5,2.75)内.⑤由于(2,3) (2.5,3) (2.5,2.75),所以零点所在的范围确实越来越小了.⑥例如,当精确度为0.01时,由于|2.539 062 5 – 2.531 25| = 0.007 812 5<0.01,所以,我们可以将x = 2.531 25作为函数f (x) = lnx + 2x – 6零点的近似值,也即方程lnx + 2x – 6 = 0根的近似值. 师:怎样求方程lnx + 2x – 6 = 0的根.引导:观察图形生:方程的根在(2,3)区间内师:能否用缩小区间的方法逼近方程的根生:应该可用师:我们现用一种常见的数学方法—二分法,共同探究已知方程的根.师生合作,借助计算机探求方程根的近似值.区间中点的值中点函数近似值(2,3)2.5–0.084(2.5,3)2.750.512(2.5,2.75)2.6250.215(2.5,2.625)2.56250.066(2.5,2.5625)2.53125–0.009(2.53125,2.5625)2.5468750.029(2.53125,2.546875)2.53906250.010(2.53125,2.5390625)2.535156250.001 由旧到新设疑、析疑导入课题,实例分析了解二分法、进一步师生合作尝试二分法.
形成概念 1.对于区间[a,b]上连续不断且f (a)·f (b)<0的函数y = f (x),通过不断地把函数f (x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.2.给定精确度,用二分法求函数f (x)零点近似值的步聚如下:(1)确定区间[a,b],验证f (a)·f (b)<0,给定精确度;(2)求区间(a,b)的中点c;(3)计算f (c);①若f (c) = 0,则c就是函数的零点;②若f (a)·f (c)<0,则令b = c(此时零点x0∈(a,c));③若f (c)·f (b)<0,则令a = c(此时零点x0∈(c,b)).(4)判断是否达到精确度:即若|a – b|<,则得到零点近似值a(或b);否则重复2~4. 师生合作回顾实例:求方程lnx + 2x – 6 = 0的近似解(精确度0.01)的操作过程.掌握二分法,总结应用二分法的步骤师:讲授二分法的定义.生:总结应用二分法的步骤.学生交流总结,学生代表口述步骤,老师完善并板书. 由特殊到一般形成概念,归纳总结应用二分法的步骤.
应用举例 例1 借助计算器或计算机用二分法求方程2x + 3x = 7的近似解(精确度0.1). 师生合作应用二分法,遵循二分法的步骤求解,并借助函数图象检验.例1 解:原方程即2x + 3x –7 = 0,令f (x) = 2x + 3x –7,用计算器或计算机作出函数f (x) = 2x + 3x –7的对应值表与图象x01234f(x)=2x+3x–7–6–231021x5678f(x)=2x+3x–74075142273观察图或表可知f(1)·f(2)<0,说明这个函数在区间(1,2)内有零点x0.取区间(1,2)的中点x1=1.5,用计算器算得f(1.5)≈0.33.因为f(1)·f(1.5)<0,所以x0∈(1,1.5).再取(1,1.5)的中点x 2=1.25,用计算器算得f(1.25)≈–0.87.因为f(1.25)·f(1.5)<0,所以x0∈(1.25,1.5).同理可得x0∈(1.375,1.5),x0∈(1.375,1.4375)由于|1.375–1.4375| = 0.0625<0.1,所以,原方程的近似解可取为1.4375. 尝试体验二分法,培养应用二分法从而固化基本理论技能
巩固练习 1.借助计算器或计算机,用二分法求函数f(x) = x3 + 1.1x2 + 0.9x– 1.4在区间(0,1)内的零点(精确度0.1).2.借助计算器或计算机,用二分法求方程x = 3 – lgx在区间(2,3)内的近似解(精确度0.1). 学生动手尝试练习,师生借助计算机合作完成求解.1.解:由题设可知f(0)= –1.4<0,f(1)=1.6>0,于是f(0)·f(1)<0,所以,函数f(x)在区间(0,1)内有一个零点.下面用二分法求函数f(x) = x3 + 1.1x2 + 0.9x– 1.4在区间(0,1)内的零点取区间(0,1)的中点x1=0.5,用计算器可算得f(0.5)= –0.55.因为f(0.5)·f(1)<0,所以x0∈(0.5,1).再取区间(0.5,1)的中点x2=0.75,用计算器可算得f(0.75)≈0.32.因为f(0.5)·f(0.75)<0,所以x0∈(0.5,0.75).同理可得x0∈(0.625,0.75),x0∈(0.625,0.6875),x0∈(0.65625,0.6875)由于|0.6875–0.65625|=0.3125<0.1,所以原方程的近似解可取为0.65625.2.解原方程即x + lgx– 3 = 0,令f(x) = x + lgx– 3,用计算器可算得f(2)≈–0.70,f(3)≈0.48,于是f(2)· f(3)<0,所以,这个方程在区间(2,3)内有一个解.下面用二分法求方程x = 3 – lgx在区间(2,3)内的近似解.取区间(2,3)的中点x1 = 2.5,用计算器可算得f(2.5)≈–0.10.因为f(2.5)·f(3)<0,所以x0 ∈(2.5,3).再取区间(2.5,3)的中点x2 = 2.75,用计算器可算得f(2.75)≈0.19.因为f(2.5)·f(2.75)<0,所以x0 ∈(2.5,2.75).同理可得x0 ∈(2.5,2.625),x0 ∈(2.5625,2.625).由于|2.625–2.5625|=0.0625<0.1,所以原方程的近似解可取为2.5625. 进一步体验二分法,巩固应用二分法的方法与技巧及注意事项.
课后练习 3.1 第三课时 习案 学生独立完成 巩固二分法应用技能
备选例题
例1 用二分法求函数f (x) = x3 – 3的一个正实数零点(精确到0.1).
【解析】由于f (1) = –2<0,f (2) = 5>0,因此可以确定区间[1,2]作为计算的初始区间,用二分法逐步计算,列表如下:
端点或中点的横坐标 计算端点或中点的函数值 定区间
a0 = 1,b0 = 2 f(1)= –2,f(2)=5 [1,2]
f (x0) = 0.375>0 [1,1.5]
f (x1) = –1.0469<0 [1.25,1.5]
f (x2) = –0.4004<0 [1.375,1.5]
f (x3) = –0.0295<0 [1.4375,1.5]
f (x4) = 0.1684>0 [1.4375,1.46875]
f (x5)>0 [1.4375,1.453125]
x6 = 1.4453125 f (x6)>0 [1.4375,1.4453125]
由上表的计算可知区间[1.4375,1.4453125]的左、右端点精确到0.1所取的近似值都是1.4,所以1.4可作为所求函数的一个正实数零点的近似值.
( http: / / www. / )

≠第2课时 集合间的基本关系
(一)教学目标; ( http: / / www. )1.知识与技能
(1)理解集合的包含和相等的关系. ( http: / / www. )(2)了解使用Venn图表示集合及其关系.
(3)掌握包含和相等的有关术语、符号,并会使用它们表达集合之间的关系. ( http: / / www. )2.过程与方法
(1)通过类比两个实数之间的大小关系,探究两个集合之间的关系. ( http: / / www. )(2)通过实例分析,获知两个集合间的包含与相等关系,然后给出定义.
(3)从自然语言,符号语言,图形语言三个方面理解包含关系及相关的概念. ( http: / / www. )3.情感、态度与价值观
应用类比思想,在探究两个集合的包含和相等关系的过程中,培养学习的辨证思想,提高学生用数学的思维方式去认识世界,尝试解决问题的能力. ( http: / / www. )(二)教学重点与难点
重点:子集的概念;难点:元素与子集,即属于与包含之间的区别. ( http: / / www. )(三)教学方法
在从实践到理论,从具体到抽象,从特殊到一般的原则下,一方面注意利用生活实例,引入集合的包含关系. 从而形成子集、真子集、相等集合等概念. 另一方面注意几何直观的应用,即Venn图形象直观地表示、理解集合的包含关系,子集、真子集、集合相等概念及有关性质. ( http: / / www. )(四)教学过程
教学环节 教学内容 师生互动 设计意图
创设情境提出问题 思考:实数有相关系,大小关系,类比实数之间的关系,联想集合之间是否具备类似的关系. 师:对两个数a、b,应有a>b或a = b或a<b.而对于两个集合A、B它们也存在A包含B,或B包含A,或A与B相等的关系. 类比生疑, ( http: / / www. )引入课题
概念形成 分析示例:示例1:考察下列三组集合,并说明两集合内存在怎样的关系 ( http: / / www. )(1)A = {1,2,3} B = {1,2,3,4,5} ( http: / / www. )(2)A = {新华中学高(一)6班的全体女生}B = {新华中学高(一)6 班的全体学生} ( http: / / www. )(3)C = {x | x是两条边相等的三角形}D = {x | x是等腰三角形} ( http: / / www. )1.子集:一般地,对于两个集合A、B,如果A中任意一个元素都是B的元素,称集合A是集合B的子集,记作,读作:“A含于B”(或B包含A) ( http: / / www. )2.集合相等:若,且,则A=B. 生:实例(1)、(2)的共同特点是A的每一个元素都是B的元素. ( http: / / www. )师:具备(1)、(2)的两个集合之间关系的称A是B的子集,那么A是B的子集怎样定义呢?学生合作:讨论归纳子集的共性. ( http: / / www. )生:C是D的子集,同时D是C的子集.师:类似(3)的两个集合称为相等集合. ( http: / / www. )师生合作得出子集、相等两概念的数学定义. 通过实例的共性探究、感知子集、相等概念,通过归纳共性,形成子集、相等的概念.初步了解子集、相等两个概念.
概念 ( http: / / www. )深化 示例1:考察下列各组集合,并指明两集合的关系:(1)A = Z,B = N; ( http: / / www. )(2)A = {长方形},B = {平行四边形};(3)A={x| x2–3x+2=0},B ={1,2}. ( http: / / www. )1.Venn图用平面上封闭曲线的内部代表集合. ( http: / / www. )如果,则Venn图表示为: ( http: / / www. )2.真子集如果集合,但存在元素x∈B,且xA,称A是B的真子集,记作A ( http: / / www. )B (或B A).示例3 考察下列集合. 并指出集合中的元素是什么? ( http: / / www. )(1)A = {(x,y) | x + y =2}.(2)B = {x | x2 + 1 = 0,x∈R}. ( http: / / www. )3.空集称不含任何元素的集合为空集,记作.规定:空集是任何集合的子集;空集是任何非空集合的真子集. 示例1 学生思考并回答.生:(1) (2) (3)A = B师:进一步考察(1)、(2)不难发现:A的任意元素都在B中,而B中存在元素不在A中,具有这种关系时,称A是B的真子集.示例3 学生思考并回答.生:(1)直线x+y=2上的所有点(2)没有元素师:对于类似(2)的集合称这样的集合为空集.师生合作归纳空集的定义. 再次感知子集相等关系,加深对概念的理解,并利用韦恩图从“形”的角度理解包含关系,层层递进形成真子集、空集的概念.
能力提升 一般结论:①.②若,,则.③A = B,且. 师:若a≤a,类比.若a≤b,b≤c,则a≤c类比.若,,则.师生合作完成:(1)对于集合A,显然A中的任何元素都在A中,故.(2)已知集合,同时,即任意x∈Ax∈Bx∈C,故. 升华并体会类比数学思想的意义.
应用举例 例1(1)写出集合{a、b}的所有子集;(2)写出集合{a、b、c}的所有子集;(3)写出集合{a、b、c、d}的所有子集;一般地:集合A含有n个元素则A的子集共有2n个. A的真子集共有2n – 1个. 学习练习求解,老师点评总结.师:根据问题(1)、(2)、(3),子集个数的探究,提出问题:已知A = {a1,a2,a3…an},求A的子集共有多少个? 通过练习加深对子集、真子集概念的理解.培养学生归纳能力.
归纳总结 子集:任意x∈Ax∈B真子集:A B 任意x∈Ax∈B,但存在x0∈B,且x0A.集合相等:A = B且空集():不含任何元素的集合性质:①,若A非空,则 A.②.③,. 师生合作共同归纳—总结—交流—完善.师:请同学合作交流整理本节知识体系 引导学生整理知识,体会知识的生成,发展、完善的过程.
课后作业 1.1 第二课时习案 学生独立完成 巩固基础提升能力
备选训练题
例1 能满足关系{a,b}{a,b,c,d,e}的集合的数目是( A )
A.8个 B.6个 C.4个 D.3个
【解析】由关系式知集合A中必须含有元素a,b,且为{a,b,c,d,e}的子集,所以A中元素就是在a,b元素基础上,把{c,d,e}的子集中元素加上即可,故A = {a,b},A = {a,b,c},A = {a,b,d},A = {a,b,e},A = {a,b,c,d},A = {a,b,c,e},A = {a,b,d,e},A = {a,b,c,d,e},共8个,故应选A.
例2 已知A = {0,1}且B = {x |},求B.
【解析】集合A的子集共有4个,它们分别是:,{0},{1},{0,1}.
由题意可知B = {,{0},{1},{0,1}}.
例3 设集合A = {x – y,x + y,xy},B = {x2 + y2,x2 – y2,0},且A = B,求实数x和y的值及集合A、B.
【解析】∵A = B,0∈B,∴0∈A.
若x + y = 0或x – y = 0,则x2 – y2 = 0,这样集合B = {x2 + y2,0,0},根据集合元素的互异性知:x + y≠0,x – y≠0.
∴ (I) 或 (II)
由(I)得:或或
由(II)得:或或
∴当x = 0,y = 0时,x – y = 0,故舍去.
当x = 1,y = 0时,x – y = x + y = 1,故也舍去.
∴或,
∴A = B = {0,1,–1}.
例4 设A = {x | x2 – 8x + 15 = 0},B = {x | ax – 1 = 0},若,求实数a组成的集合,并写出它的所有非空真子集.
【解析】A = {3,5},∵,所以
(1)若B =,则a = 0;
(2)若B≠,则a≠0,这时有或,即a =或a =.
综上所述,由实数a组成的集合为.
其所有的非空真子集为:{0},共6个.
( http: / / www. / )
A
B



≠2.1.2 指数函数及其性质(三)
(一)教学目标
1.知识与技能:
(1)熟练掌握指数函数概念、图象、性质;
(2)掌握指数形式的函数定义域、值域的求法,以及单调性、奇偶性判断;
(3)培养学生数学应用意识
2.过程与方法:
(1)让学生了解数学来自生活,数学又服务于生活的哲理;
(2)培养学生观察问题,分析问题的能力.
3.情感、态度与价值观
(1) 认识从特殊到一般的研究方法.
(2) 了解数学在生产实际中的应用.
(二)教学重点、难点
1.教学重点:指数形式的函数图象、性质的应用.
2.教学难点:判断单调性.
(三)教学方法
启发学生运用证明函数单调性的基本步骤对指数形式的复合函数的单调性进行证明,但应在变形这一关键步骤帮助学生总结、归纳有关指数形式的函数变形技巧,以利于下一步判断.
(四)教学过程
教学环节 教学内容 师生互动 设计意图
复习引入 回顾1.指数函数的定义、图象、性质.2.函数的单调性、奇偶性的定义,及其判定方法.3. 复合函数单调性的判定方法. 老师提问学生回答复合函数y=f[g(x)]是由函数u=g(x)和y=f(u)构成的,函数u=g(x)的值域应是函数y=f(u)的定义域的子集.在复合函数y=f[g(x)]中,x是自变量,u是中间变量.当u=g(x)和y=f(u)在给定区间上增减性相同时,复合函数y=f[g(x)]是增函数;增减性相反时,y=f[g(x)]是减函数. 为学习新课作好了知识上的准备.
应用举例 例1 当a>1时,判断函数y=是奇函数.例2 求函数y=()的单调区间,并证明之.课堂练习1. 求函数y=3的单调区间和值域.2. 设a是实数,试证明对于任意a,为增函数; 例1师:你觉得应该如何去判断一个函数的奇偶性?(生口答,师生共同归纳总结)方法引导:判断一个函数奇偶性的一般方法和步骤是:(1)求出定义域,判断定义域是否关于原点对称.(2)若定义域关于原点不对称,则该函数是非奇非偶函数.(3)若所讨论的函数的定义域关于原点对称,进而讨论f(-x)和f(x)之间的关系.若f(-x)=f(x),则函数f(x)是定义域上的偶函数;若f(-x)=-f(x),则函数f(x)是定义域上的奇函数;若f(-x)=f(x)且f(-x)=-f(x),则函数f(x)在定义域上既是奇函数又是偶函数.师:请同学们根据以上方法和步骤,完成例题1.(生完成引发的训练题,通过实物投影仪,交流各自的解答,并组织学生评析,师最后投影显示规范的解答过程,规范学生的解题)证明:由ax-1≠0,得x≠0,故函数定义域为{x|x≠0},易判断其定义域关于原点对称.又f(-x)====-f(x),∴f(-x)=-f(x).∴函数y=是奇函数.例2师:证明函数单调性的方法是什么 (生口答,师生共同归纳总结)方法引导:(1)在区间D上任取x1<x2.(2)作差判断f(x1)与f(x2)的大小:化成因式的乘积,从x1<x2出发去判断.(3)下结论:如果f(x1)<f(x2),则函数f(x)在区间D上是增函数;如果f(x1)>f(x2),则函数f(x)在区间D上是减函数.解:在R上任取x1、x2,且x1<x2,则==()=().∵x1<x2,∴x2-x1>0.当x1、x2∈(-∞,1]时,x1+x2-2<0.这时(x2-x1)(x2+x1-2)<0,即>1.∴y2>y1,函数在(-∞,1]上单调递增.当x1、x2∈[1,+∞)时,x1+x2-2>0,这时(x2-x1)(x2+x1-2)>0,即<1.∴y2<y1,函数在[1,+∞上单调递减. 综上,函数y在(-∞,1]上单调递增,在[1,+∞)上单调递减.合作探究:在填空、选择题中用上述方法就比较麻烦,因此我们可以考虑用复合函数的单调性来解题. 解法二、(用复合函数的单调性):设: 则:对任意的,有,又∵是减函数∴ ∴在是减函数对任意的,有,又∵是减函数∴ ∴在是增函数小结:在讨论比较复杂的函数的单调性时,首先根据函数关系确定函数的定义域,进而分析研究函数解析式的结构特征,将其转化为两个或多个简单初等函数在相应区间上的单调性的讨论问题.在该问题中先确定内层函数()和外层函数()的单调情况,再根据内外层函数的单调性确定复合函数的单调性.课堂练习答案1.解:由题意可知,函数y=3的定义域为实数R.设u=-x2+2x+3(x∈R),则f(u)=3u,故原函数由u=-x2+2x+3与f(u)=3u复合而成.∵f(u)=3u在R上是增函数,而u=-x2+2x+3=-(x-1)2+4在x∈(-∞,1]上是增函数,在[1,+∞)上是减函数.∴y=f(x)在x∈(-∞,1]上是增函数,在[1,+∞)上是减函数.又知u≤4,此时x=1,∴当x=1时,ymax=f(1)=81,而3>0,∴函数y=f(x)的值域为(0,81].2.分析:此题虽形式较为复杂,但应严格按照单调性、奇偶性的定义进行证明还应要求学生注意不同题型的解答方法(1)证明:设∈R,且则 由于指数函数 y=在R上是增函数,且,所以即<0,又由>0得+1>0, +1>0所以<0即因为此结论与a取值无关,所以对于a取任意实数,为增函数小结:上述证明过程中,在对差式正负判断时,利用了指数函数的值域及单调性 掌握指数形式函数奇偶性的判断.掌握指数形式函数单调性的判断.
归纳总结 1.复合函数单调性的讨论步骤和方法;2.复合函数奇偶性的讨论步骤和方法. 学生先自回顾反思,教师点评完善. 形成知识体系.
课后作业 作业:2.1 第六课时 习案 学生独立完成 巩固新知提升能力
备选例题
例1已知且,讨论的单调性.
【分析】这是一道与指数函数有关的复合函数讨论单调性题,
指数,当≥时是减函数,≤时是增函数,
而的单调性又与和两种范围有关,应分类讨论.
【解析】设

则当≥时,是减函数,
当≤时,是增函数,
又当时,是增函数,
当时,是减函数,
所以当时,原函数在上是减函数,在上是增函数.
当时,原函数在上是增函数,在上是减函数.
【小结】一般情况下,两个函数都是增函数或都是减函数,则其复合函数是增函数;如果两个函数中一增一减,则其复合函数是减函数,但一定注意考虑复合函数的定义域.
例2已知函数 求函数的定义域、值域
解:作出函数图像,观察分析讨论,教师引导、整理.
定义域为 R
由得
∵xR, ∴△0, 即 , ∴, 又∵,∴
∴值域为.
( http: / / www. / )新课标人教A 必修11.1.3 集合的基本运算
学习目标:
(1)理解交集与并集的概念;
  (2)掌握两个较简单集合的交集、并集的求法;
  (3)通过对交集、并集概念的讲解,培养学生观察、比较、分析、概括、等能力,使学生认识由具体到抽象的思维过程;
  (4)通过对集合符号语言的学习,培养学生符号表达能力,培养严谨的学习作风,养成良好的学习习惯。
教学重点:交集和并集的概念
教学难点:交集和并集的概念、符号之间的区别与联系
合作探究展示:
问题衔接
我们知道两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?
思考(P8思考题),引入并集概念。
新课教学
并集
一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)
记作:A∪B 读作:“A并B”
即: A∪B={x|x∈A,或x∈B}
Venn图表示:
说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。
例题(P8-9例4、例5)
说明:连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。
问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。
交集
一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。
记作:A∩B 读作:“A交B”
即: A∩B={x|∈A,且x∈B}
交集的Venn图表示
说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。
例题(P9-10例6、例7)
拓展:求下列各图中集合A与B的并集与交集
说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集
探索研究
A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A
AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A
归纳小结(略)
作业布置
书面作业:P12习题1.1,第6-8题
拓展提高:
题型一 已知集合的交集、并集求参数问题
例1 已知集合,若,
求实数的值
解:∵,∴,而,
∴当,
这样与矛盾;
当符合

练习1已知集合若求a的值
答案 a=-3
例2.已知若求的取值范围.
解(1)若此时
(2)若
综上所述,的取值范围是
练习2上题中若。
答案 :不存在
题型二 交集、并集性质的运用
例3 设,其中,
如果,求实数的取值范围
解:由,而,
当,即时,,符合;
当,即时,,符合;
当,即时,中有两个元素,而;
∴得

练习3设集合求实数的取值范围.
答案:
随堂检验:
1.满足 ( B )
(A)1 (B)2 (C)3 (D)4
已知集合那么等于 ( B )
(B) (C) (D)
已知集合那么 ( D )
(0,2)(1,1) (B) (C) (D)
已知集合
已知集合则 -4
已知集合若求实数的取值范围 x
( http: / / www. / )
A∪B
A
B
A

A B
A(B)
A
B
B
A
B A2.3 幂函数
(一)教学目标
1.知识与技能
(1)理解幂函数的概念,会画幂函数y=x,y=x2,y=x3,y=x-1,y=x的图象.
(2)结合这几个幂函数的图象,理解幂函数图象的变化情况和性质.
2.过程与方法
(1)通过观察、总结幂函数的性质,培养学生概括抽象和识图能力.
(2)使学生进一步体会数形结合的思想.
3. 情感、态度、价值观
(1)通过生活实例引出幂函数的概念,使学生体会到数学在实际生活中的应用,激发学生的学习兴趣.
(2)利用计算机,了解幂函数图象的变化规律,使学生认识到现代技术在数学认知过程中的作用,从而激发学生的学习欲望.
(二)教学重点、难点
重点:常见幂函数的概念、图象和性质.
难点:幂函数的单调性及比较两个幂值的大小.
(三)教学方法
采用师生互动的方式,由学生自我探索、自我分析,合作学习,充分发挥学生的积极性与主动性.
利用实物投影仪及计算机辅助教学.
(四)教学过程
教学环节 教学内容 师生互动 设计意图
复习引入 (多媒体显示以下5个问题,同时附注相关图象,每个问题的结论由学生说出,然后再在多面体屏幕上弹出)问题1:如果张红购买了每千克1元的蔬菜w千克,那么她需要付的钱数p=w元,这里p是w的函数.问题2:如果正方形的边长为a,那么正方形的面积S=a2,这里S是a的函数.问题3:如果正方体的边长为a,那么正方体的体积V=a3,这里V是a的函数.问题4:如果正方形场地的面积为S,那么正方形的边长a=S,这里a是S的函数.问题5:如果某人t s内骑车行进了1 km,那么他骑车的平均速度v=t-1 km/s,这里v是t的函数. 学生阅读、思考、交流、口答,教师板演.师:观察上述例子中函数模型,这几个函数表达式有什么共同特征?生:解析式的右边都是指数式,且底数都是变量. 变量在底数位置,解析式右边又都是幂的形式,我们把这种函数叫做幂函数.(引入新课,书写课题) 培养学生的观察、归纳、概括能力,
形成概念 幂函数的定义一般地,形如(R)的函数称为幂函数,其中是自变量,是常数. 师:请同学们举出几个具体的幂函数.生:如等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数. 理解幂函数的定义.
深化概念 1.研究幂函数的图像(1) (2) (3) (4) (5)2.通过观察图像,填P86探究中的表格定义域RR奇偶性奇奇在第Ⅰ象限单调增减性在第Ⅰ象限单调递增在第Ⅰ象限单调递增定点(1,1)(1,1)R奇非奇非偶奇在第Ⅰ象限单调递增在第Ⅰ象限单调递增在第Ⅰ象限单调递减(1,1)(1,1)(1,1)3.幂函数性质 (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1)(原因:); (2)>0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数(从左往右看,函数图象逐渐上升). 特别地,当>1,>1时,∈(0,1),的图象都在图象的下方,形状向下凸越大,下凸的程度越大(你能找出原因吗?) 当0<α<1时,∈(0,1),的图象都在的图象上方,形状向上凸,α越小,上凸的程度越大(你能说出原因吗?) (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一家限内,当向原点靠近时,图象在轴的右方无限逼近轴正半轴,当慢慢地变大时,图象在轴上方并无限逼近轴的正半轴. 引导学生用列表描点法,应用函数的性质,如奇偶性,定义域等,画出函数图像,最后,教师利用电脑软件画出以上五个数数的图像.让学生通过观察图像,分组讨论,探究幂函数的性质和图像的变化规律,教师注意引导学生用类比研究指数函数,对函数的方法研究幂函数的性质. 探究幂函数的性质和图像的变化规律,
应用举例 例1 求下列幂函数的定义域,并指出其奇偶性、单调性.(1)y=x;(2)y=x;(3)y=x-2.例2 证明幂函数f(x)=在[0,+∞)上是增函数.请同学们回顾一下如何证明一个函数是增函数,然后请一个学生作答,师板书.合作探究:【例3】 比较下列各组数的大小:(1)1.5,1.7,1;(2)(-),(-),1.1;(3)3.8,3.9,(-1.8);(4)31.4,51.5.课堂练习1.下列函数中,是幂函数的是A.y=-x B.y=3x2 C.y= D.y=2x2.下列结论正确的是A.幂函数的图象一定过(0,0)和(1,1)B.当α<0时,幂函数y=xα是减函数C.当α>0时,幂函数y=xα是增函数D.函数y=x2既是二次函数,也是幂函数3.函数y=x的图象大致是 4.幂函数f(x)=ax(m∈Z)的图象与x轴和y轴均无交点,并且图象关于原点对称,求a和m. 例1分析:解决有关函数求定义域的问题时,可以从以下几个方面来考虑,列出相应不等式(组),解不等式(组)即可得到所求函数的定义域.①若函数解析式中含有分母,分母不能为0;②若函数解析式中含有根号,要注意偶次根号下非负;③0的0次幂没有意义;④若函数解析式中含有对数式,要注意对数的真数大于0.解:(1)函数y=x,即y=,其定义域为R,是偶函数,它在[0,+∞)上单调递增,在(-∞,0]上单调递减.(2)函数y=x,即y=,其定义域为(0,+∞),它既不是奇函数,也不是偶函数,它在(0,+∞)上单调递减.(3)函数y=x-2,即y=,其定义域为(-∞,0)∪(0,+∞),是偶函数.它在区间(-∞,0)和(0,+∞)上都单调递减.例2证明:设0≤x1<x2,则f(x1)-f(x2)=-==,因为x1-x2<0,+>0,所以f(x1)<f(x2),即幂函数f(x)=在[0,+∞)上是增函数.小结:以上是用作差法证明函数的单调性,还可以用作商法证明函数的单调性,作简要分析,提出注意点:在证得<1后,要比较f(x1)与f(x2)的大小,要注意分母的符号.例3分析:比较两个或多个数值的大小,一般情况下是将所要比较的两个或多个数值转化为比较某一函数的不同函数值的大小问题,进而根据所确定的函数的单调性,比较自变量的大小即可.若所给的数值不能转化为比较同一函数的不同函数值的大小问题,可以找出中间量来作为桥梁间接地进行比较,确定出它们的大小关系,一般情况下是根据具体情况选择常数“1”“-1”或“0”这些数作为中间量来进行比较.解:(1)∵所给的三个数之中1.5和1.7的指数相同,且1的任何次幂都是1,因此,比较幂1.5、1.7、1的大小就是比较1.5、1.7、1的大小,也就是比较函数y=x中,当自变量分别取1.5、1.7和1时对应函数值的大小关系,因为自变量的值的大小关系容易确定,只需确定函数y=x的单调性即可,又函数y=x在(0,+∞)上单调递增,且1.7>1.5>1,所以1.7>1.5>1.(2)(-)=(),(-)=(),1.1=[(1.1)2]=1.21.∵幂函数y=x在(0,+∞)上单调递减,且<<1.21,∴()>()>1.21,即(-)>(-)>1.1.(3)利用幂函数和指数函数的单调性可以发现0<3.8<1,3.9>1,(-1.8)<0,从而可以比较出它们的大小.(4)它们的底和指数也都不同,而且都大于1,我们插入一个中间数31.5,利用幂函数和指数函数的单调性可以发现31.4<31.5<51.5.小结:(1)当底数相异,指数相同的数比较大小,可以转化为比较同一幂函数的不同函数值的大小问题,根据函数的单调性,只要比较自变量的大小就可以了.(2)当底和指数都不同,插入一个中间数,综合利用幂函数和指数函数的单调性来比较.课堂练习答案:1. C 2. D 3. D 4. a=1,m=1,3,5,7. 掌握幂函数知识的应用.
归纳总结 1.幂函数的概念以及它和指数函数表达式的区别.2.常见幂函数的图象和性质.3.幂值的大小比较方法. 学生先自回顾反思,教师点评完善. 形成知识体系.
课后作业 作业:2.3 第一课时 习案 学生独立完成 巩固新知提升能力
备选例题
例1 已知是幂函数,求m,n的值.
【解析】由题意得,
解得, 所以.
【小结】做本题时,常常忽视m2 + 2m – 2 = 1且2n – 3 = 0这些条件.
表达式y =(x∈R)的要求比较严格,系数为1,底数是x,∈R为常数,如,y = 1 = x0为幂函数,而如y = 2x2,y = (x – 1)3等都不是幂函数.
例2 比例下列各组数的大小.
(1);
(2)(–2)–3和(–2.5)–3;
(3)(1.1)–0.1和(1.2)–0.1;
(4).
【解析】(1),函数在
(0, +∞)上为增函数,又,则,
从而.
(2)幂函数y = x–3在(–∞, 0)和(0, +∞)上为减函数,
又∵–2>–2.5,∴(–2)–3<(–2.5)–3.
(3)幂函数y = x–0.1在(0, +∞)上为减函数,
又∵1.1<1.2,∴1.1–0.1>1.2–0.1.
(4)>= 1;0<<= 1;
<0,
∴<<.
【小结】比较大小题,要综合考虑函数的性质,特别是单调性的应用,更善于用“搭桥”法进行分组,常数0和1是常用的“桥梁”.
( http: / / www. / )
y=x-1
y=x3
02.1.2 指数函数及其性质(一)
(一)教学目标
1.知识与技能
了解指数函数模型的实际背景,理解指数函数的概念,掌握指数函数的图象.
2.过程与方法
能借助计算器或计算机画出具体指数函数的图象,探索指数函数图象特征.
3.情感、态度与价值观
在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣,努力培养学生的创新意识.
(二)教学重点、难点
1.教学重点:指数函数的概念和图象.
2.教学难点:指数函数的概念和图象.
(三)教学方法
采用观察、分析、归纳、抽象、概括,自主探究,合作交流的教学方法,通过各种教学媒体(如计算机或计算器),调动学生参与课堂教学的主动性和积极性.
(四)教学过程
教学环节 教学内容 师生互动 设计意图
复习引入 1. 在本章的开头,问题(1)中时间与GDP值中的,请问这两个函数有什么共同特征. 2. 这两个函数有什么共同特征,从而得出这两个关系式中的底数是一个正数,自变量为指数,即都可以用(>0且≠1来表示). 学生思考回答函数的特征. 由实际问题引入,不仅能激发学生的学习兴趣,而且可以培养学生解决实际问题的能力.
形成概念理解概念 指数函数的定义一般地,函数(>0且≠1)叫做指数函数,其中是自变量,函数的定义域为R.回答:在下列的关系式中,哪些不是指数函数,为什么?(1) (2) (3)(4) (5) (6)(7) (8) (>1,且)小结:根据指数函数的定义来判断说明:因为>0,是任意一个实数时,是一个确定的实数,所以函数的定义域为实数集R.若<0,如在实数范围内的函数值不存在.若=1, 是一个常量,没有研究的意义,只有满足的形式才能称为指数函数, 如:不符合 . 学生独立思考,交流讨论,教师巡视,并注意个别指导,学生探讨分析,教师点拨指导. 由特殊到一般,培养学生的观察、归纳、概括的能力.使学生进一步理解指数函数的概念.
深化概念 我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究. 下面我们通过先来研究(>1)的图象,用计算机完成以下表格,并且用计算机画出函数的图象124再研究先来研究(0<<1)的图象,用计算机完成以下表格并绘出函数的图象.124                       从图中我们看出通过图象看出实质是上的讨论:的图象关于轴对称,所以这两个函数是偶函数,对吗?②利用电脑软件画出的函数图象. 问题:从画出的图象中,你能发现函数的图象与底数间有什么样的规律.从图上看(>1)与两函数图象的特征——关于轴对称. 学生列表计算,描点、作图.教师动画演示.学生观察、归纳、总结,教师诱导、点评. 通过列表、计算使学生体会、感受指数函数图象的化趋势,通过描点,作图培养学生的动手实践能力.不同情况进行对照,使学生再次经历从特殊到一般,由具体到抽象的思维过程.培养学生的归纳概括能力.
应用举例 例1:(P66 例6)已知指数函数(>0且≠1)的图象过点(3,π),求 学生思考、解答、交流,教师巡视,注意个别指导,发现带有普遍性的问题,应及时提到全体学生面前供大家讨论.例1分析:要求再把0,1,3分别代入,即可求得解:将点(3,π),代入得到,即,解得:,于是,所以,,. 巩固所学知识,培养学生的数形结合思想和创新能力.
归纳总结 1、理解指数函数2、解题利用指数函数的图象,可有利于清晰地分析题目,培养数型结合与分类讨论的数学思想 . 学生先自回顾反思,教师点评完善. 通过师生的合作总结,使学生对本节课所学知识的结构有一个明晰的认识,形成知识体系.
课后作业 作业:2.1 第四课时 习案 学生独立完成 巩固新知提升能力
备选例题
例1 指出下列函数哪些是指数函数:
(1); (2);
(3); (4);
(5); (6);
(7); (8)且.
【分析】 根据指数函数定义进行判断.
【解析】 (1)、(5)、(8)为指数函数;
(2)是幂函数(后面2.3节中将会学习);
(3)是与指数函数的乘积;
(4)底数,不是指数函数;
(6)指数不是自变量,而底数是的函数;
(7)底数不是常数.
它们都不符合指数函数的定义.
【小结】准确理解指数函数的定义是解好本问题的关键.
例2 用计算机作出的图像,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y=的图象的关系,
⑴y=与y=.
⑵y=与y=.
解:⑴作出图像,显示出函数数据表
x -3 -2 -1 0 1 2 3
0.125 0.25 0.5 1 2 4 8
0.25 0.5 1 2 4 8 16
0.5 1 2 4 8 16 32
比较函数y=、y=与y=的关系:将指数函数y=的图象向左平行移动1个单位长度,就得到函数y=的图象,将指数函数y=的图象向左平行移动2个单位长度,就得到函数y=的图象
⑵作出图像,显示出函数数据表
x -3 -2 -1 0 1 2 3
0.125 0.25 0.5 1 2 4 8
0.625 0.125 0.25 0.5 1 2 4
0.3125 0.625 0.125 0.25 0.5 1 2
比较函数y=、y=与y=的关系:将指数函数y=的图象向右平行移动1个单位长度,就得到函数y=的图象,将指数函数y=的图象向右平行移动2个单位长度,就得到函数y=的图象
小结:⑴当m>0时,将指数函数y=的图象向右平行移动m个单位长度,就得到函数y=的图象;当m>0时,将指数函数y=的图象向左平行移动m个单位长度,就得到函数y=的图象
( http: / / www. / )
03.2.2 几类不同增长的函数模型
(一)教学目标 ( http: / / www. )1.知识与技能
利用函数增长的快慢一般规律,借助函数模型,研究解决实际问题,培养数学的应用意识. ( http: / / www. )2.进程与方法
在实例分析、解决的过程中,体会函数增长快慢的实际意义,从而提高学生应用数学解决实际问题的能力. ( http: / / www. )3.情感、态度与价值观
在实际问题求解的过程中,享受数学为人们的生产和生活服务的乐趣,激发学生学习数学知识的兴趣. ( http: / / www. )(二)教学重点与难点
重点:应用数学理论解决实际问题的兴趣培养和能力提升 ( http: / / www. )难点:函数建模及应用函数探求问题的能力培养.
(三)教学方法 ( http: / / www. )尝试指导与合作交流相结合,学生自主学习和老师引导相结合.解决实际问题范例,培养学生利用函数增长快慢的数学知识对实际问题进行探究和决策.
(四)教学过程
教学环节 教学内容 师生互动 设计意图
回顾复习 ( http: / / www. )引入深题 ①增函数的增长快慢比较方法:利用列表与图象,借助二分法求根,探究快慢相应区间获得一般结论. 师:幂函数、指数函数、对数函数的增长快慢一般性规律.生:回顾总结,口述回答. 以旧引新导入课题
实例分析 例1 假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下: ( http: / / www. )方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元; ( http: / / www. )方案三:第一天回报0.4元,以后每天回报比前一天翻一番.请问,你会选择哪种投资方案? ( http: / / www. )司的要求? 师生合作探究解答过程例1 解答:设第x天所得回报是y元,则方案一可以用函数y = 40 (x∈N*)进行描述;方案二可以用函数y = 10x(x∈N*)进行描述;方案三可以用函数y = 0.4×2x–1(x∈N*)进行描述. ( http: / / www. )三种方案所得回报的增长情况x/天方案一y/元增加量/元1402400340044005400640074008400940010400………30400x/天方案二y/元增加量/元11022010330104401055010660107701088010990101010010………3030010x/天方案三y/元增加量/元10.420.80.431.60.843.21.656.43.2612.86.4725.612.8851.225.69102.451.210204.8102.4………30214748364.8107374182.4再作三个函数的图象 ( http: / / www. )在第1~3天,方案一最多;在第4天,方案一和方案二一样多,方案三最少;在第5~8天,方案二最多;第9天开始,方案三比其他两个方案所得回报多得多,到第30天,所得回报已超过2亿元.例2 解答:作出函数y=5,y=0.25x,y=log7x +1,y=1.002x的图象. ( http: / / www. )观察图象发现,在区间[10,1000]上,模型y=0.25x,y=1.002x的图象都有一部分在直线y=5的上方,只有模型y=log7x+1的图象始终在y=5的下方,这说明只有按模型y=log7x+1进行奖励时才符合公司的要求. ( http: / / www. )首先计算哪个模型的奖金总数不超过5万.对于模型y=0.25x,它在区间[10,1000]上递增,而且当x=20时,y=5,因此,当x>20时,y>5,所以该模型不符合要求; ( http: / / www. )对于模型y=log7x+1,它在区间[10,1000]上递增,而且当x=1000时,y=log71000+1≈4.55<5,所以它符合奖金总数不超过5万元的要求.再计算按模型y=log7x+1奖励时,奖金是否不超过利润的25%,即当x∈[10,1000]时,是否有 ( http: / / www. )成立.令f(x)=log7 x+1– 0.25x,x∈[10,1000] 将实际问题转化为数学问题,利用图象、表格及恰当的推理,应用不同函数的增长快慢解决实际应用问题.
巩固练习 1.四个变量y1 ,y2 ,y3 ,y 4随变量x变化的数据如下表x051015y151305051130y2594.4781785.233733y35305580y452.31071.42951.1407x202530y1200531304505y26.37×1051.2×1072.28×108y3105130155y41.04611.01511.005关于x呈指数型函数变化的变量是 . ( http: / / www. )2.某种计算机病毒是通过电子邮件进行传播的,如果某台计算机感染上这种病毒,那么它就会在下一轮病毒发作时传播一次病毒,并感染其他20台未感染病毒的计算机.现有10台计算机被第1轮病毒感染,问被第5轮病毒感染的计算机有多少台? 1.解:y22.解:设第1轮病毒发作时有a1=10台被感染,第2轮,第3轮……依次有a2台,a3 台……被感染,依题意有a5=10×204=160. ( http: / / www. )答:在第5轮病毒发作时会有160万台被感染. 动手尝试提升解题能力
归纳总结 2.中学数学建模的主要步骤(1)理解问题:阅读理解,读懂文字叙述,认真审题,理解实际背景.弄清楚问题的实际背景和意义,设法用数学语言来描述问题. ( http: / / www. )(2)简化假设:理解所给的实际问题之后,领悟背景中反映的实质,需要对问题作必要的简化,有时要给出一些恰当的假设,精选问题中关键或主要的变量.(3)数学建模:把握新信息,勇于探索,善于联想,灵活化归,根据题意建立变量或参数间的数学关系,实现实际问题数学化,引进数学符号,构建数学模型,常用的数学模型有方程、不等式、函数. ( http: / / www. )(4)求解模型:以所学的数学性质为工具对建立的数学模型进行求解.(5)检验模型:将所求的结果代回模型之中检验,对模拟的结果与实际情形比较,以确定模型的有效性,如果不满意,要考虑重新建模.(6)评价与应用:如果模型与实际情形比较吻合,要对计算的结果作出解释并给出其实际意义,最后对所建立的模型给出运用范围.如果模型与实际问题有较大出入,则要对模型改进并重复上述步骤. 师生合作 反思归纳总结完善生:通过独立思考和必要的交流,分析归纳例1、例2的解题过程,简述建模的主要步骤.师:点评、总理学生的回答,然后完善归纳步骤.师生合作:结合上一课时总结函数增长快慢在实际应用问题中的应用体会. 培养整理知识的学习品质.通过知识整合培养数学应用能力.
课后练习 3.2 第二课时 习案 学生独立完成 强化基础提高能力
备选例题
例1 有一批影碟机(VCD)原销售价为每台800元,在甲、乙两家电商场均有销售. 甲商场用如下的方法促销,买一台单价为780元,买二台单价为760元,依次类推,每多买一台单价均减少20元,但每台最低不低于440元;乙商场一律按原价的75%销售,某单位需购买一批此类影碟机,问去哪家商场购买花费最小.
【解析】设单位购买x台影碟机,
在甲商场购买,每台的单价为800 – 20x,则总费用
在乙商场购买,费用y = 600x.
(1)当0<x<10时,(800x – 20x2)>600x
∴购买影碟机低于10台,在乙商场购买.
(2)当x = 10时,(800x – 20x2) = 600x
∴购买10台影碟机,在甲商场或在乙商场费用一样.
(3)当10<x≤18时,(800x – 20x2)<600x
∴购买影碟机多于10台且不多于18台,在甲商场购买.
(4)当x≥18时,600x>440x
∴购买影碟机多于18台,在甲商场购买.
答:若购买小于10台,去乙商场购买;若购买10台,在甲商场或在乙商场费用一样多;若购买多于10台,在甲商场购买.
【评析】实际应用问题求解,理解题意建立模型是关键,建好模型后实际问题使自然转化为数学问题.
例2 某皮鞋厂今年1月份开始投产,并且前4个月的产量分别为1万双,1.2万双,1.3万双,1.37万双. 由于产品质量好,款式新颖,前几个月的销售情况良好.为了推销员在推销产品时,接受定单不至于过多或过少,需要估计以后几个月的产量. 厂里分析,产量的增加是由于工人生产熟练和理顺了生产流程. 厂里也暂时不准备增加设备和工人. 假如你是厂长,就月份x,产量为y给出四种函数模型:y = ax + b,y = ax2 + bx + c,y = a+ b,y = abx + c,你将利用哪一种模型去估算以后几个月的产量?
【解析】本题是通过数据验证,确定系数,然后分析确定函数变化情况,最终找出与实际最接近的函数模型.
由题意知A(1,1),B(2,1.2),C(3,1.3),D(4,1.37).
(1)设模拟函数为y=ax+b,将B、C两点的坐标代入函数式,有,解得
所以得y=0.1x+1.
因此此法的结论是:在不增加工人和设备的条件下,产量会月月上升1000双,这是不太可能的.
(2)设y = ax2 + bx + c,将A、B、C三点代入,有,解得,
所以y= – 0.05x2+0.35x+0.7.
因此由此法计算4月份产量为1.3万双,比实际产量少700双,而且,由二次函数性质可知,产量自4月份开始将月月下降(图象开口向下,对称轴x=3.5),不合实际.
(3)设y=+b,将A,B两点的坐标代入,有,解得,
所以y=.
因此把x = 3和4代入,分别得到y=1.35和1.48,与实际产量差距较大.
(4)设y = abx + c,将A,B,C三点的坐标代入,得,解得,
所以y= – 0.8×(0.5)x+1.4.
因此把x= 4代入得y= – 0.8×0.54+1.4=1.35.比较上述四个模拟函数的优劣,既要考虑到误差最小,又要考虑生产的实际,比如增产的趋势和可能性. 经过筛选,以指数函数模拟为最佳,一是误差小,二是由于新建厂,开始随工人技术、管理效益逐渐提高,一段时间内产量会明显上升,但过一段时间之后,如果不更新设备,产量必然趋于稳定,而指数函数模拟恰好反映了这种趋势.
因此,选用y= –0.8×0.54+1.4模拟比较接近客观实际.
【评析】本题是对数据进行函数模拟,选择最符合的模拟函数.一般思路要先画出散点图,然后作出模拟函数的图象,选择适合的几种函数类型后,再加以验证.函数模型的建立是最大的难点,另外运算量较大,必须借助计算机进行数据处理,函数模型的可靠性与合理性既需要数据检验,又必须与实际结合起来.
( http: / / www. / )1.2.1函数的概念
(一)教学目标 ( http: / / www. )1.知识与技能
(1)理解函数的概念;体会随着数学的发展,函数的概念不断被精炼、深化、丰富. ( http: / / www. )(2)初步了解函数的定义域、值域、对应法则的含义.
2.过程与方法 ( http: / / www. )(1)回顾初中阶段函数的定义,通过实例深化函数的定义.
(2)通过实例感知函数的定义域、值域,对应法则是构成函数的三要素,将抽象的概念通过实例具体化. ( http: / / www. )3.情感、态度与价值观
在函数概念深化的过程中,体会数学形成和发展的一般规律;由函数所揭示的因果关系,培养学生的辨证思想. ( http: / / www. )(二)教学重点与难点
重点:理解函数的概念;难点:理解函数符号y = f (x)的含义. ( http: / / www. )(三)教学方法
回顾旧知,通过分析探究实例,深化函数的概念;体会函数符号的含义. 在自我探索、合作交流中理解函数的概念;尝试自学辅导法. ( http: / / www. )(四)教学过程
教学环节 教学内容 师生互动 设计意图
回顾复习提出问题 函数的概念:(初中)在一个变化过程中有两个变量x和y,如果对于x的每一个值,y都有唯一的值与对应. 那么就说y是x的函数,其中x叫做自变量. 师:初中学习了函数,其含义是什么.生:回忆并口述初中函数的定义.(师生共同完善、概念) 由旧知引入函数的概念.
形成概念 示例分析 ( http: / / www. )示例1:一枚炮弹发射后,经过26s落到地面击中目标. 炮弹的射高①为845m,且炮弹距地面的高度h (单位:m)随时间t (单位:s)变化的规律是h = 130t – 5t2. ( http: / / www. )示例2:近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空沿问题. 下图中的曲线显示了南极上空臭氧层空洞的面积从1979~2001年的变化情况. ( http: / / www. )示例3 国际上常用恩格尔系数②反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高,下表中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.“八五”计划以来我国城镇居民 ( http: / / www. )恩格尔系数变化情况时间(年)199119921993199419951996城镇居民家庭恩格尔系数(%)53.852.950.149.949.948.6时间(年)19971998199920002001城镇居民家庭恩格尔系数(%)46.444.541.939.237.9函数的概念:设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f (x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function),记作 ( http: / / www. )y = f (x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f (x) | x∈A}叫做函数的值域(range). 显然,值域是集合B的子集. 变化范围,自变量与因变量之间的对应关系. ( http: / / www. )因果关系. 利用示例,探究规律,形成并深化函数的概念.体会函数新定义的精确性及实质.
应用举例 下列例1、例2、例3是否满足函数定义例1 若物体以速度v作匀速直线运动,则物体通过的距离S与经过的时间t的关系是S = vt.例2 某水库的存水量Q与水深h(指最深处的水深)如下表:水深h(米)0510152025存水量Q(立方)0204090160275例3 设时间为t,气温为T(℃),自动测温仪测得某地某日从凌晨0点到半夜24点的温度曲线如下图. 老师引导学生分析例1、例2、例3是否满函数的定义. 并指明对应法则和定义域.例1的对应法则f:t→s = Vt,定义域t∈[0, +∞).例2的对应法则一个表格h→Q,定义域h∈{0, 5, 10, 15, 20, 25}.例3的对应法则f:一条曲线,t∈[0,24]. 对任意t,过t作t轴的垂线与曲线交于一点P (t, T),即t→T. 通过三个实例反映函数的三种表示形式.
深化概念 表示函数的方法:1.解析式:把常量和表示自变量的字母用一系列运算符号连接起来,得到的式子叫做解析式.2.列表法:列出表格来表示两个变量之间的对应关系.3.图象法:用图象表示两个变量之间的对应关系. 师:请同学另举例说明函数用图象法和列表法表示的.生:平方表、平方根表、三角函数表、火车站的时间车次表、股市走势图. 归纳总结函数的三种常见表示法.
归纳总结 1.函数的概念;2.函数的三要素;3.函数的表达式. 师生共同回顾总结,并简要阐述. 总结知识,形成系统
课后作业 1.2第一课时习案 独立完成 巩固知识
备选例题
例1 函数y = f (x)表示( C )
A.y等于f与x的乘积 B.f (x)一定是解析式
C.y是x的函数 D.对于不同的x,y值也不同
例2 下列四种说法中,不正确的是( B )
A.函数值域中每一个数都有定义域中的一个数与之对应
B.函数的定义域和值域一定是无限集合
C.定义域和对应关系确定后,函数的值域也就确定了
D.若函数的定义域只含有一个元素,则值域也只含有一个元素
例3 已知f (x) = x2 + 4x + 5,则f (2) = 2.7 ,f (–1) = 2 .
例4 已知f (x) = x2 (x∈R),表明的“对应关系”是 平方 ,它是 R → R 的函数.
例5 向高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系如右图示,那么水瓶的形状是下图中的( B )
【解析】取水深,注水量V′>,即水深为一半时,实际注水量大小水瓶总水量的一半,A中V′<,C、D中V′=,故排除A、C、D.
( http: / / www. / )
20
15
10
5
0
6 12 18 24
℃3.1.1 方程的根与函数的零点
(一)教学目标
1.知识与技能
(1)理解函数零点的意义,了解函数零点与方程根的关系.
(2)由方程的根与函数的零点的探究,培养转化化归思想和数形结合思想.
2.过程与方法
由一元二次方程的根与一元二次函数的图象与x轴的交点情况分析,导入零点的概念,引入方程的根与函数零点的关系,从而培养学生的转化化归思想和探究问题的能力.
3.情感、态度与价值观
在体验零点概念形成过程中,体会事物间相互转化的辨证思想,享受数学问题研究的乐趣.
(二)教学重点与难点
重点:理解函数零点的概念,掌握函数零点与方程根的求法.
难点:数形结合思想,转化化归思想的培养与应用.
(三)教学方法
在相对熟悉的问题情境中,通过学生自主探究,合作交流中完成的学习任务.尝试指导与自主学习相结合.
(四)教学过程
教学环节 教学内容 师生互动 设计意图
复习引入 观察下列三组方程与函数方 程函 数x2–2x–3 = 0y=x2–2x–3x2–2x+1 = 0y=x2–2x+1x2–2x+3 = 0y=x2–2x+3利用函数图象探究方程的根与函数图象与x轴的交点之间的关系 师生合作师:方程x2 – 2x –3 = 0的根为–1,3函数y = x2 – 2x – 3与x轴交于点(–1,0) (3,0)生:x2 – 2x + 1 = 0有相等根为1.函数y= x2 – 2x + 1与x轴有唯一交点 (1,0).x2 – 2x + 3 = 0没有实根函数y = x2 – 2x + 3与x轴无交点 以旧引新,导入课题
概念形成 1.零点的概念对于函数y=f (x),称使 y=f (x)= 0的实数x为函数 y=f (x)的零点2.函数的零点与方程根的关系方程f (x) = 0有实数根函数y = f (x)的图象与x轴有交点函数y = f (x)的零点3.二次函数零点的判定对于二次函数y = ax2 + bx + c与二次方程ax2 + bx + c,其判别式△= b2 – 4ac判别式方程ax2 + bx + c = 0的根函数y = ax2 + bx + c的零点△>0两不相等实根两个零点△=0两相等实根一个零点△<0没有实根0个零点 师:我们通俗地称函数与x轴交点的横坐标为函数的零点,请同学归纳零点的定义师:考察函数①y = lgx②y = lg2(x + 1) ③y = 2x④y = 2x – 2的零点生:①y = lgx的零点是x = 1②y = lg2(x + 1)的零点是x=0③y = 2x没有零点④y = 2x – 2的零点是x = 1 归纳总结感知概念分析特征形成概念
概念深化 引导学生回答下列问题①如何求函数的零点?②零点与图象的关系怎样? 师生合作,学生口答,老师点评,阐述生①零点即函数为零对应的自变量的值,零点即对应方程的根②零点即函数图象与x轴交点的横坐标③求零点可转化为求方程的根 以问题讨论代替老师的讲援
应用举例 练习1.求函数y = –x2 – 2x + 3的零点,并指出y>0,y = 0的x的取值范围练习2.求函数y =x3 – 2x2 – x + 2的零点,并画出它的图象练习3.利用函数图象判断下列方程有没有根,有几个根:(1) –x2+3x+5 = 0;(2)2x (x–2) = –3;(3)x2 = 4x – 4;(4)5x2+2x=3x2+5. 学生自主尝试练习完成练习1、2、3生:练习1解析:零点–3,1x∈(–3,1)时y>0时y<0练习2解析:因为x3–2x2–x+2 = x2 (x – 2) – (x – 2) = (x–2) (x2–1) = (x – 2) (x – 1) (x + 1),所以已知函数的零点为–1,1,2.3个零点把x轴分成4个区间:,[–1,1],[1,2],在这4个区间内,取x的一些值(包括零点),列出这个函数的对应值表:x…–1.5–1–0.500.511.522.5…y…–4.3801.8821.130–0.6302.63…在直角坐标系内描点连线,这个函数的图象如图所示练习3解析:(1)令f (x) = –x2 + 3x + 5,作出函数f (x)的图象,它与x轴有两个交点,所以方程–x2 + 3x + 5 = 0有两个不相等的实数根.(2)2x (x – 2) = –3可化为2x2–4x+3=0令f (x) = 2x2–4x+3作出函数f (x)的图象,它与x轴没有交点,所以方程2x (x – 2) = –3无实数根(3)x2 = 4x – 4可化为x2 – 4x + 4 = 0,令f (x) = x2 – 4x + 4,作出函数f (x)的图象,它与x轴只有一个交点(相切),所以方程x2 = 4x – 4有两个相等的实数根(4)5x2+2x=3x2+5可化为2x2 + 2x – 5 = 0,令f (x) = 2x2 + 2x–5,作出函数f (x)的图象,它与x轴有两个交点,所以方程5x2+2x=3x2+5有两个不相等的实数根师:点评板述练习的解答过程 让学生动手练习或借助多媒体演示,加深对概念的说明,培养思维能力
归纳总结 (1)知识方面零点的概念、求法、判定(2)数学思想方面函数与方程的相互转化,即转化思想借助图象探寻规律,即数形结合思想 学生归纳,老师补充、点评、完善 回顾、反思、归纳知识,提高自我整合知识的能力
课后作业 3.1 第一课时 习案 学生独立完成 固化知识,提升能力
备选例题
例:已知a∈R讨论关于x的方程|x2 – 6x + 8| = a的实数解的个数.
【解析】令f (x) = |x2 – 6x + 8|,g (x) = a,在同一坐标系中画出f (x)与g (x)的图象,如图所示,
f (x) = | (x – 3)2 – 1|,
下面对a进行分类讨论,由图象得,
当a<0时,原方程无实数解;
当a = 0时,原方程实数解的个数为3;
当0<a<1时,原方程实数解的个数为4;
当a>1或a = 0时,原方程实数解的个数为2.
( http: / / www. / )课题:§1.2集合间的基本关系
教材分析:类比实数的大小关系引入集合的包含与相等关系
了解空集的含义
课 型:新授课
教学目的:(1)了解集合之间的包含、相等关系的含义;
(2)理解子集、真子集的概念;
(3)能利用Venn图表达集合间的关系;
(4)了解与空集的含义。
教学重点:子集与空集的概念;用Venn图表达集合间的关系。
教学难点:弄清元素与子集 、属于与包含之间的区别;
教学过程:
引入课题
复习元素与集合的关系——属于与不属于的关系,填以下空白:
(1)0 N;(2) Q;(3)-1.5 R
类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)
新课教学
集合与集合之间的“包含”关系;
A={1,2,3},B={1,2,3,4}
集合A是集合B的部分元素构成的集合,我们说集合B包含集合A;
如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集(subset)。
记作:
读作:A包含于(is contained in)B,或B包含(contains)A
当集合A不包含于集合B时,记作A B
用Venn图表示两个集合间的“包含”关系
集合与集合之间的 “相等”关系;
,则中的元素是一样的,因此

练习
结论:
任何一个集合是它本身的子集
真子集的概念
若集合,存在元素,则称集合A是集合B的真子集(proper subset)。
记作:A B(或B A)
读作:A真包含于B(或B真包含A)
举例(由学生举例,共同辨析)
空集的概念
(实例引入空集概念)
不含有任何元素的集合称为空集(empty set),记作:
规定:
空集是任何集合的子集,是任何非空集合的真子集。
结论:
,且,则
例题
(1)写出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。
(2)化简集合A={x|x-3>2},B={x|x5},并表示A、B的关系;
课堂练习
归纳小结,强化思想
两个集合之间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,同时还要注意区别“属于”与“包含”两种关系及其表示方法;
作业布置
书面作业:习题1.1 第5题
提高作业:
已知集合,≥,且满足,求实数的取值范围。
设集合,
,试用Venn图表示它们之间的关系。
板书设计(略)
( http: / / www. / )
B
A课题:函数的表示法(一)
课 型:新授课
教学目标:
(1)掌握函数的三种表示方法(解析法、列表法、图像法),了解三种表示方法各自的优点;
(2)在实际情境中,会根据不同的需要选择恰当的方法表示函数;
(3)通过具体实例,了解简单的分段函数,并能简单应用。
教学重点:会根据不同的需要选择恰当的方法表示函数。
教学难点:分段函数的表示及其图象。
教学过程:
课前准备
(预习教材---,找出疑惑之处)
复习1.回忆函数的定义;
复习2.函数的三要素分别是什么?
二、新课导学:
(一)学习探究
探究任务:函数的三种表示方法
讨论:结合课本P15 给出的三个实例,说明 三种表示方法的适用范围及其优点
小结:解析法:就是用数学表达式表示两个变量之间的对应关系,如1.2.1的实例(1);
优点:简明扼要;给自变量求函数值。
图象法:就是用图象表示两个变量之间的对应关系,如1.2.1的实例(2);
优点:直观形象,反映两个变量的变化趋势。
列表法:就是列出表格来表示两个变量之间的对应关系,如1.2.1的实例(3);
优点:不需计算就可看出函数值,如股市走势图; 列车时刻表;银行利率表等。
典型例题
例1.(课本P19 例3)某种笔记本的单价是2元,买x (x∈{1,2,3,4,5})个笔记本需要y元.试用三种表示法表示函数y=f(x) .
变式:作业本每本0.3元,买x个作业本的钱数y(元),试用三种方法表示此实例中的函数。
反思:例1及变式的函数有何特征?所有的函数都可用解析法表示吗?
例2:(课本P20 例4)下表是某校高一(1)班三位同学在高一学年度六次数学测试的成绩及班级平均分表:
第一次 第二次 第三次 第四次 第五次 第六次
王伟 98 87 91 92 88 95
张城 90 76 88 75 86 80
赵磊 68 65 73 72 75 82
班级平均分 88.2 78.3 85.4 80.3 75.7 82.6
请你对这三们同学在高一学年度的数学学习情况做一个分析
例3:某市“招手即停”公共汽车的票价按下列规则制定:
(1)5公里以内(含5公里),票价2元;
(2)5公里以上,每增加5公里,票价增加1元(不足5公里的俺公里计算)。
如果某条线路的总里程为20公里,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象。
图象(略)
变式:邮局寄信,不超过20g重时付邮资0.5元,超过20g重而不超过40g重付邮资1元,每封x克()重的信应付邮资数y(元),试写出y关于x的函数解析式,并画出函数图象。
小结:在函数的定义域内,对于自变量x的不同取值范围,有着不同的对应法则,这样的函数通常叫做分段函数,
动手试试:
1.已知f(x)=,求f(0)、f[f(-1)]的值
2.设函数,则 18 ,若,则= 4 。
归纳小结:
本节课归纳了函数的三种表示方法及优点;讲述了分段函数概念;了解了函数的图象可以是一些离散的点、线段、曲线或射线。
课题:函数的表示法(二)
课 型:新授课
教学目标:
(1)了解映射的概念及表示方法;
(2)掌握求函数解析式的方法:换元法,配凑法,待定系数法,消去法,分段函数的解析式。
教学重点:求函数的解析式。
教学难点:对函数解析式方法的掌握。
教学过程:
课前准备:
(预习教材,找出疑惑之处)
复习:举例初中已经学习过的一些对应,或者日常生活中的一些对应实例:
(1)对于任何一个实数a,数轴上都有唯一的点P和它对应;
(2)对于坐标平面内任何一个点A,都有唯一的有序实数对(x,y)和它对应;
(3)对于任意一个三角形,都有唯一确定的面积和它对应;
(4)某影院的某场电影的每一张电影票有唯一确定的座位与它对应;
你还能找出一些其它的实例吗?
二、新课导学:
(一) 映射的概念:
定义:
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应为从集合A到集合B的一个映射(mapping)。记作:
例1.(课本P22例7)以下给出的对应是不是从A到集合B的映射?
集合A={P | P是数轴上的点},集合B=R,对应关系f:数轴上的点与它所代表的实数对应;
集合A={P | P是平面直角坐标系中的点},B= ,对应关系f: 平面直角坐标系中的点与它的坐标对应;
集合A={x | x是三角形},集合B={x | x是圆},对应关系f:每一个三角形都对应它的内切圆;
集合A={x | x是新华中学的班级},集合B={x | x是新华中学的学生},对应关系:每一个班级都对应班里的学生。
反思:
(1)映射有三个要素:两个集合,一种对应法则,缺一不可;
(2)A,B可以是数集,也可以是点集或其它集合。这两个集合具有先后顺序:符号“f:A→B”表示A到B的映射,符号“f:B→A”表示B到A的映射,两者是不同的;
(3)集合A中的元素不可剩余,B中元素可剩余。
讨论:1函数与映射两者的联系与区别分别是什么?
2若用集合表示两者的关系,应怎样表示?
(二)求函数的解析式:
学习探究:常见的求函数解析式的方法有待定系数法,换元法,配凑法,消去法。
例3.已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求函数f(x)的解析式。
(待定系数法)
例4.已知f(2x+1)=3x-2,求函数f(x)的解析式。(配凑法或换元法)
例5.已知函数f(x)满足,求函数f(x)的解析式。(消去法)
复合函数求解析式:.
例7 已知函数=4x+3,g(x)=x, 求f[f(x)],f[g(x)],g[f(x)],g[g(x)].

(四)动手试试:
1.课本P23练习4;
2.已知 ,求函数f(x)的解析式。
3.已知,求函数f(x)的解析式。
4.已知,求函数f(x)的解析式。
归纳小结:
本节课系统地归纳了映射的概念,并进一步学习了求函数解析式的方法。
课题:函数的表示法(三)
课 型:新授课
教学目标:
(1)进一步了解分段函数的求法;
(2)掌握函数图象的画法。
教学重点:函数图象的画法。
教学难点:掌握函数图象的画法。。
教学过程:
课前准备:
1.举例初中已经学习过的一些函数的图象,如一次函数,二次函数,反比例函数的图象,并在黑板上演示它们的画法。
2. 讨论:函数图象有什么特点?
二、讲授新课:
例1.画出下列各函数的图象:
(1) (2);
例2.(课本P21例5)画出函数的图象。
例3.设,求函数的解析式,并画出它的图象。
变式1:求函数的最大值。
变式2:解不等式。
能力提高(选做):当m为何值时,方程有4个互不相等的实数根。
变式:不等式对恒成立,求m的取值范围。
(三)当堂检测:
1.课本P23练习3;
2.画出函数的图象。
归纳小结:
函数图象的画法。
( http: / / www. / )2.1.1 指数与指数幂的运算(二)
(一)教学目标 ( http: / / www. )1.知识与技能
(1)理解分数指数幂的概念; ( http: / / www. )(2)掌握分数指数幂和根式之间的互化;
(3)掌握分数指数幂的运算性质; ( http: / / www. )(4)培养学生观察分析、抽象等的能力.
2.过程与方法 ( http: / / www. )通过与初中所学的知识进行类比,得出分数指数幂的概念,和指数幂的性质.
3.情感、态度与价值观 ( http: / / www. ) (1)培养学生观察分析,抽象的能力,渗透“转化”的数学思想;
(2)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯; ( http: / / www. )(3)让学生体验数学的简洁美和统一美.
(二)教学重点、难点 ( http: / / www. )1.教学重点:(1)分数指数幂的理解;
 (2)掌握并运用分数指数幂的运算性质; ( http: / / www. )2.教学难点:分数指数幂概念的理解
(三)教学方法 ( http: / / www. )发现教学法
1.经历由利用根式的运算性质对根式的化简,注意发现并归纳其变形特点,进而由特殊情形归纳出一般规律. ( http: / / www. )2.在学生掌握了有理指数幂的运算性质后,进一步推广到实数范围内.由此让学生体会发现规律,并由特殊推广到一般的研究方法.
(四)教学过程
教学 ( http: / / www. )环节 教学内容 师生互动 设计意图
提出问题 回顾初中时的整数指数幂及运算性质. ( http: / / www. ), ( http: / / www. ) ( http: / / www. )什么叫实数? ( http: / / www. )有理数,无理数统称实数. 老师提问, ( http: / / www. )学生回答. 学习新知前的简单复习,不仅能唤起学生的记忆,而且为学习新课作好了知识上的准备.
复习引入 观察以下式子,并总结出规律:>0 ( http: / / www. )① ② ( http: / / www. )③ ④ ( http: / / www. )小结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式,(分数指数幂形式).根式的被开方数不能被根指数整除时,根式是否也可以写成分数指数幂的形式.如: ( http: / / www. ) ( http: / / www. )即: ( http: / / www. ) 老师引导学生“当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式,(分数指数幂形式)”联想“根式的被开方数不能被根指数整除时,根式是否也可以写成分数指数幂的形式.”.从而推广到正数的分数指数幂的意义. 数学中引进一个新的概念或法则时,总希望它与已有的概念或法则是相容的.
形成概念 ( http: / / www. ) 为此,我们规定正数的分数指数幂的意义为:正数的定负分数指数幂的意义与负整数幂的意义相同.即:规定:0的正分数指数幂等于0,0的负分数指数幂无意义.说明:规定好分数指数幂后,根式与分数指数幂是可以互换的,分数指数幂只是根式的一种新的写法,而不是 学生计算、构造、猜想,允许交流讨论,汇报结论.教师巡视指导. 让学生经历从“特殊一一般”,“归纳一猜想”,是培养学生“合情推理”能力的有效方式,同时学生也经历了指数幂的再发现过程,有利于培养学生的创造能力.
深化概念 由于整数指数幂,分数指数幂都有意义,因此,有理数指数幂是有意义的,整数指数幂的运算性质,可以推广到有理数指数幂,即:(1)(2)(3)若>0,P是一个无理数,则P该如何理解?为了解决这个问题,引导学生先阅读课本P57——P58.即:的不足近似值,从由小于的方向逼近,的过剩近似值从大于的方向逼近.所以,当不足近似值从小于的方向逼近时,的近似值从小于的方向逼近.当的过剩似值从大于的方向逼近时,的近似值从大于的方向逼近,(如课本图所示) 所以,是一个确定的实数.一般来说,无理数指数幂是一个确定的实数,有理数指数幂的性质同样适用于无理数指数幂.无理指数幂的意义,是用有理指数幂的不足近似值和过剩近似值无限地逼近以确定大小.思考:的含义是什么?由以上分析,可知道,有理数指数幂,无理数指数幂有意义,且它们运算性质相同,实数指数幂有意义,也有相同的运算性质,即: 让学生讨论、研究,教师引导. 通过本环节的教学,进一步体会上一环节的设计意图.
应用举例 例题例1(P56,例2)求值;;;.例2(P56,例3)用分数指数幂的形式表或下列各式(>0);;.分析:先把根式化为分数指数幂,再由运算性质来运算.解:; ; .课堂练习:P59练习 第 1,2,3,4题补充练习:1. 计算:的结果;2. 若. 学生思考,口答,教师板演、点评.例1解:① ; ② ; ③ ;④.例2分析:先把根式化为分数指数幂,再由运算性质来运算.解:;;.练习答案:1.解:原式===512;2.解:原式==. 通过这二个例题的解答,巩固所学的分数指数幂与根式的互化,以及分数指数幂的求值,提高运算能力.
归纳总结 1.分数指数是根式的另一种写法.2.无理数指数幂表示一个确定的实数.3.掌握好分数指数幂的运算性质,其与整数指数幂的运算性质是一致的. 先让学生独自回忆,然后师生共同总结. 巩固本节学习成果,使学生逐步养成爱总结、会总结的习惯和能力.
课后作业 作业:2.1 第二课时 习案 学生独立完成 巩固新知提升能力
备选例题
例1计算
(1)
(1);
【解析】
(1)原式
(2)原式=
=
=.
【小结】一般地,进行指数幂运算时,化负
指数为正指数,化小数为分数进行运算,便于进行乘除、乘方、开方运算,可以达到化繁为简的目的.
例2 化简下列各式:
(1);
(2).
【解析】
(1)原式=
=
=
=
=;
(2)原式=
.
【小结】(1)指数幂的一般运算步骤是:有括号先算括号里的;无括号先做指数运算. 负指数幂化为正指数幂的倒数. 底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数运算性质.
(2)根据一般先转化成分数指数幂,然后再利用有理指数幂的运算性质进行运算. 在将根式化为分数指数幂的过程中,一般采用由内到外逐层变换为指数的方法,然后运用运算性质准确求解. 如
.
(3)利用分数指数幂进行根式计算时,结果可化为根式形式或保留分数指数幂的形式,但不能既有根式又有分数指数幂.
( http: / / www. / )方程的根与函数的零点教案
课题 3.1.1方程的根与函数的零点 课时 第一课时
课型 新授课 授课班级 一(5)
教学目标 (1)函数的零点定义 (2)函数的零点存在定理。
过程与方法 教师引导,学生归纳,数学结合思想。
情感、态度与价值观 培养学生由特殊到一般的思维方法,会应用图像分析问题,对概念的内涵与外延理解,对定理的变式学习方法。
教学重难点 重点:函数的零点定义难点: 函数的零点存在定理及应用 教学方法: 讲授,讨论,归纳
教学用具 多媒体,直尺等。
教师教学过程设计
复习引入:
考察下列一元二次方程与对应的二次函数:
(1)方程 x2-2x-3=0 与函数y= x2-2x-3;
(2)方程 x2-2x+1=0 与函数y= x2-2x+1;
(3)方程 x2-2x+3=0 与函数y= x2-2x+3.
求出方程的根,作出函数的图像,并标出图像与X轴交点坐标。
新授:
知识探究(一):函数零点的定义
问题1:根据以上结论,一般地,一元二次方程ax2+bx+c=0(a>0)的实根与对应的二次函数y=ax2+bx+c的图象与x轴的交点有什么关系?
问题2:一般地,对于方程f(x)=0与函数y=f(x)上述关系适应吗?
定义:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点
问题3:那么函数y=f(x)的零点实际是一个什么数?
函数y=f(x)有零点可等价于哪些说法?
函数y=f(x)有零点 方程f(x)=0有实数根 函数y=f(x)的图象与x轴有公共点.
注:函数的零点不是点,而是函数所对应的方程的根,或是函数图像与X轴交点的横坐标。它具有数与形的双重意义。
练习:求下列函数的零点
知识探究(二):函数零点存在性定理
问题4: 二次函数f(x)=x2-2x-3的零点是什么?观察函数f(x)=x2-2x-3的图象,我们发现函数f(x)=x2-2x-3在区间[-2,1]上有零点,计算f(-2)与f(1)乘积,并将之与0比较大小.
在区间[2,4]上是否也具有这种特点呢?
f
问题5: 一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,那么在什么条件下,函数y=f(x)在区间(a,b)内一定有零点吗?
函数零点存在性定理:
如果①函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且②有 f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈ (a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.
思考1:如果函数y=f(x)在区间[a,b]上的图象是间断的,上述定理适应吗?
思考2:反过来,函数y=f(x)在区间(a,b)上存在零点,f(a)·f(b)<0是否一定成立?
思考3: 满足了上述两个条件后,函数的零点是唯一的吗 还要添加什么条件可以保证函数有唯一零点
练习:1。函数f(x)=x3+x-1在下列哪个区间上有零点( )
A (-2,-1 ) B ( 0 , 1 ) C ( 1 , 2 ) D ( 2 , 3 )
2.求证:方程5x2-7x-1=0的一个根在区间( -1, 0 )内,另一个根在区间(1,2)内。
三.例题讲解
例1 求函数f(x)=lnx+2x -6零点的个数.
问题1:你可以想到用什么方法来判断函数的零点?
问题2:你是如何来确定零点所在区间的?
问题3:零点是唯一的吗?
四.小结
五.作业P88 1 , 学案。
( http: / / www. / )