北师大版 数学九年级上册2.6 应用一元二次方程(第2课时 利用一元二次方程求解营销类问题)课件(共25张)

文档属性

名称 北师大版 数学九年级上册2.6 应用一元二次方程(第2课时 利用一元二次方程求解营销类问题)课件(共25张)
格式 zip
文件大小 1.6MB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2020-09-29 08:58:23

图片预览

文档简介

(共25张PPT)
北师大版数学九年级上册
第二章
一元二次方程
2.6 应用一元二次方程
第2课时
利用一元二次方程求解营销类问题
1.会用一元二次方程解决销量随销售单价变化而变化的市场营销类应用题.
2.通过列方程解应用题,进一步认识方程模型的重要性,提高逻辑思维能力和分析问题、解决问题的能力.
学习目标
1.列一元二次方程解应用题的步骤:(1)审题;(2)_______;(3)列方程;(4)解方程;(5)
______;(6)写出答案.
2.利用一元二次方程解决销售利润问题:这类问题中的等量关系有:
(1)一件商品的利润=一件商品的售价-一件商品的_____;
(2)商品的利润率=
×100%;
(3)商品的总利润=一件商品的利润×销售商品的______.利用以上等量关系,结合题意建立方程来解决此类问题.
设元
检验
进价
数量
回顾旧知
知识模块 利用一元二次方程求解营销类问题
(一)自主探究
新华商场销售某种冰箱,每台进货价为2500元。市场调研表明:当销售价为2900元时,平均每天能售出8台;

而当销售价每降低50元时,平均每天就能多售出4台。商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的降价应为多少元?
探究新知
(二)合作探究
某商场将销售成本为30元的台灯以40元的价格售出,平均每月销售600个.市场调查表明:这种台灯的售价每上涨1元,每月平均销售数量将减少10个.若销售利润率不得高于100%,那么销售这种台灯每月要获利10000元,台灯的售价应定为多少元?
分析:如果这种台灯售价上涨x元,那么每个月每个台灯获利(40+x-30)元,每月平均销售数量为(600-10x)个,销售利润为(40+x-30)和(600-10x)的积.用一元二次方程解决实际问题时,所求得的结果往往有两个,而实际问题的答案常常是一个,这就需要我们仔细审题,看清题目的要求,进而作出正确的选择.
解:设这种台灯的售价上涨x元,根据题意,得
(40+x-30)(600-10x)=10000,
即x2-50x+400=0,解得x1=10,x2=40.
所以每个台灯的售价应定为50元或80元.
当台灯售价定为80元,售价利润率为166.7%,高于100%,不符合要求;
当台灯售价定为50元时,售价利润率为66.7%,低于100%,符合要求.
答:每个台灯售价应定为50元.
归纳总结:
列一元二次方程解应用题,步骤与以前的列方程应用题一样,其中审题是解决问题的基础,找等量关系列方程是关键,恰当灵活地设元直接影响着列方程与解法的难易,它可以为正确合理的答案提供有利的条件.方程的解必须进行实际意义的检验.
1.某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.市场调研表明:当销售价为每上涨1元时,其销售量就将减少10个.商场要想销售利润平均每月达到10000元,每个台灯的定价应为多少元?这时应进台灯多少个?
练习
2.某商店从厂家以每件21元的价格购进一批商品,若每件商品售价为x元,则每天可卖出(350-10x)件,但物价局限定每件商品加价不能超过进价的20%.商店要想每天赚400元,需要卖出多少年来件商品?每件商品的售价应为多少元?
3.某商场销售一批名牌衬衫,现在平均每天能售出20件,每件盈利40元.为了尽快减少库存,商场决定采取降价措施.经调查发现:如果这种衬衫的售价每降低1元时,平均每天能多售出2件.商场要想平均每天盈利1200元,每件衬衫应降价多少元?
1.兰翔百合经销店将进货价为20元/盒的百合,在市场参考价28-38元/盒的范围内定价为36元/盒销售,这样平均每天可售出40盒.经市场调查发现,在进货价不变的情况下,若每盒售价每下调1元钱,平均每天就能多销售10盒,要使每天的利润达到750元,应将每盒的售价下调(  )
A.1元        B.11元
C.1元或11元
D.无法确定
A
课堂练习
2.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为(  )
A.(x+1)(x+2)=18
B.x2-3x+16=0
C.(x-1)(x-2)=18
D.x2+3x+16=0
C
3.某小区2018年屋顶绿化面积为2000平方米,计划2019年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是______.
20%
4.某商店准备进一批季节性小家电,单价为40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若准备获利2000元,则应进货多少个?定价为多少元?
解:设每个商品的定价是x元,由题意,得
(x-40)[180-10(x-52)]=2000,
整理,得x2-110x+3000=0,
解得x1=50,x2=60.
当x=50时,进货180-10(x-52)=200(个),不符合题意,舍去.
当x=60时,进货180-10(x-52)=100(个).
答:该商品每个定价为60元,进货100个.
5.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.
(1)求该种商品每次降价的百分率;
(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?
解:(1)设该种商品每次降价的百分率为x%,
依题意得:400×(1-x%)2=324,
解得:x=10,或x=190(舍去).
答:该种商品每次降价的百分率为10%.
(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100-m)件,
第一次降价后的单件利润为:400×(1-10%)-300=60(元/件);
第二次降价后的单件利润为:324-300=24(元/件).
依题意得:60m+24×(100-m)=36m+2400≥3210,
解得:m≥22.5.
∴m≥23.
答:为使两次降价销售的总利润不少于3210元.第一次降价后至少要售出该种商品23件.
6.在直角墙角AOB(OA⊥OB,且OA、OB长度不限)中,要砌20m长的墙,与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96m2.
(1)求这地面矩形的长;
(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?
7.如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的
.
(1)求配色条纹的宽度;
(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.
建立一元二次方程模型
实际问题
分析数量关系
设未知数
实际问题的解
解一元二次方程
一元二次方程的根


运用一元二次方程模型解决实际问题的步骤有哪些?
总结新知