24.2 点和圆、直线和圆的位置关系(中考真题专练)

文档属性

名称 24.2 点和圆、直线和圆的位置关系(中考真题专练)
格式 zip
文件大小 3.3MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2020-09-29 08:45:18

文档简介

中小学教育资源及组卷应用平台
第24章圆24.2点和圆、直线和圆的位置关系(中考真题专练)
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.(2020·广西中考真题)如图,AB是⊙O的弦,AC与⊙O相切于点A,连接OA,OB,若∠O=130°,则∠BAC的度数是(  )
A.60°
B.65°
C.70°
D.75°
【答案】B
【解析】
【分析】
利用切线的性质及等腰三角形的性质求出∠OAC及∠OAB即可解决问题.
【详解】
解:∵AC与⊙O相切于点A,
∴AC⊥OA,
∴∠OAC=90°,
∵OA=OB,
∴∠OAB=∠OBA.
∵∠O=130°,
∴∠OAB==25°,
∴∠BAC=∠OAC﹣∠OAB=90°﹣25°=65°.
故选:B.
【点评】
本题考查的是切线的性质,等腰三角形的性质,三角形的内角和定理,掌握以上知识是解题的关键.
2.(2020·四川凉山·中考真题)下列命题是真命题的是(

A.顶点在圆上的角叫圆周角
B.三点确定一个圆
C.圆的切线垂直于半径
D.三角形的内心到三角形三边的距离相等
【答案】D
【解析】
【分析】
根据圆周角的定义、圆的定义、切线的定义,以及三角形内心的性质,分别进行判断,即可得到答案.
【详解】
解:A、顶点在圆上,并且角的两边与圆相交的角叫圆周角,故A错误;
B、不在同一条直线上的三点确定一个圆,故B错误;
C、圆的切线垂直于过切点的半径,故C错误;
D、三角形的内心到三角形三边的距离相等,故D正确;
故选:D.
【点评】
本题考查了判断命题的真假,圆周角的定义、圆的定义、切线的定义,以及三角形内心的性质,解题的关键是熟练掌握所学的知识进行判断.
3.(2020·四川凉山·中考真题)如图,等边三角形ABC和正方形ADEF都内接于,则(

A.
B.
C.
D.
【答案】B
【解析】
【分析】
过点O作,,设圆的半径为r,根据垂径定理可得△OBM与△ODN是直角三角形,根据三角函数值进行求解即可得到结果.
【详解】
如图,过点O作,,设圆的半径为r,
∴△OBM与△ODN是直角三角形,,
∵等边三角形ABC和正方形ADEF都内接于,
∴,,
∴,,
∴,,
∴.
故答案选B.
【点评】
本题主要考查了圆的垂径定理知识点应用,结合等边三角形和正方形的性质,利用三角函数求解是解题的关键.
4.(2020·内蒙古赤峰·中考真题)如图,中,AB=AC,AD是∠BAC的平分线,EF是AC的垂直平分线,交AD于点O.若OA
=3,则外接圆的面积为(

A.
B.
C.
D.
【答案】D
【解析】
【分析】
先根据等腰三角形的三线合一可得AD是BC的垂直平分线,从而可得点O即为外接圆的圆心,再利用圆的面积公式即可得.
【详解】
,AD是的平分线
,且AD是BC边上的中线(等腰三角形的三线合一)
是BC的垂直平分线
是AC的垂直平分线
点O为外接圆的圆心,OA为外接圆的半径
外接圆的面积为
故选:D.
【点评】
本题考查了等腰三角形的三线合一、三角形外接圆,正确找出三角形外接圆的圆心是解题关键.
5.(2012·湖北恩施·中考真题)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为(

A.3cm
B.4cm
C.6cm
D.8cm
【答案】C
【解析】
试题分析:首先连接OC,AO,由切线的性质,可得OC⊥AB,由垂径定理可得AB=2AC,然后由勾股定理求得AC的长,继而可求得AB的长.
如图,连接OC,AO,
∵大圆的一条弦AB与小圆相切,
∴OC⊥AB,
∴AC=BC=AB,
∵OA=5cm,OC=4cm,
在Rt△AOC中,AC==3cm,
∴AB=2AC=6(cm).
故选C.
考点:
1.切线的性质;2.勾股定理;3.垂径定理.
二、填空题
6.(2020·江苏泰州·中考真题)如图,直线,垂足为,点在直线上,,为直线上一动点,若以为半径的与直线相切,则的长为_______.
【答案】3或5
【解析】
【分析】
根据切线的性质可得OH=1,故OP=PH-OH或OP=PH+OH,即可得解.
【详解】

∴与直线相切,OH=1
当在直线a的左侧时,OP=PH-OH=4-1=3;
当在直线a的右侧时,OP=PH+OH=4+1=5;
故答案为3或5.
【点评】
此题主要考查切线的性质,解题的关键是根据题意分情况讨论.
7.(2020·山东东营·中考真题)如图,在中,的半径为点是边上的动点,过点作的一条切线(其中点为切点),则线段长度的最小值为____.
【答案】
【解析】
【分析】
如图:连接OP、OQ,根据,可得当OP⊥AB时,PQ最短;在中运用含30°的直角三角形的性质和勾股定理求得AB、AQ的长,然后再运用等面积法求得OP的长,最后运用勾股定理解答即可.
【详解】
解:如图:连接OP、OQ,
∵是的一条切线
∴PQ⊥OQ

∴当OP⊥AB时,如图OP′,PQ最短
在Rt△ABC中,
∴AB=2OB=,AO=cos∠A·AB=
∵S△AOB=
∴,即OP=3
在Rt△OPQ中,OP=3,OQ=1
∴PQ=.
故答案为.
【点评】
本题考查了切线的性质、含30°直角三角形的性质、勾股定理等知识点,此正确作出辅助线、根据勾股定理确定当PO⊥AB时、线段PQ最短是解答本题的关键.
8.(2019·湖北荆州·中考真题)如图,为的直径,为上一点,过点的切线交的延长线于点,为弦的中点,,,若点为直径上的一个动点,连接,当是直角三角形时,的长为__________.
【答案】4或2.56.
【解析】
【分析】
根据勾股定理求出AB,由△BCD∽△ABD得到比例式求出CD的长,当是直角三角形时,分∠AEP=90°和∠APE=90°两种情况进行讨论,可求出AP长有2种情况.
【详解】
解:连接BC
过点的切线交的延长线于点,


当时,,
经过圆心,

当时,则,

∵AB是直径,
∴∠ACB=90°.
∴∠BCD=90°.
∵∠BCD
=∠ABD,∠D是公共角,
∴△BCD∽△ABD.







综上的长为4或2.56.
故答案为4或2.56.
【点评】
本题考查的是切线的性质和相似三角形的判定与性质,熟练掌握圆的性质是解题的关键.
9.(2020·内蒙古呼和浩特·中考真题)已知为⊙O的直径且长为,为⊙O上异于A,B的点,若与过点C的⊙O的切线互相垂直,垂足为D.①若等腰三角形的顶角为120度,则;②若为正三角形,则;③若等腰三角形的对称轴经过点D,则;④无论点C在何处,将沿折叠,点D一定落在直径上,其中正确结论的序号为_________.
【答案】②③④
【解析】
【分析】
①过点O作OE⊥AC,垂足为E,
求出∠CAD=30°,得到CD=AC,再说明OE=r,利用∠OCA≠∠COE,得到CE≠OE,即可判断;②过点A作AE⊥OC,垂足为E,证明四边形AECD为矩形,即可判断;③画出图形,证明四边形AOCD为矩形,即可判断;④过点C作CE⊥AO,垂足为E,证明△ADC≌△AEC,从而说明AC垂直平分DE,得到点D和点E关于AC对称,即可判断.
【详解】
解:①∵∠AOC=120°,
∴∠CAO=∠ACO=30°,
∵CD和圆O相切,AD⊥CD,
∴∠OCD=90°,AD∥CO,
∴∠ACD=60°,∠CAD=30°,
∴CD=AC,过点O作OE⊥AC,垂足为E,
则CE=AE=AC=CD,
而OE=OC=r,∠OCA≠∠COE,
∴CE≠OE,
∴CD≠r,故①错误;
②若△AOC为正三角形,
∠AOC=∠OAC=60°,AC=OC=OA=r,
∴∠OAE=30°,
∴OE=AO,AE=AO=r,
过点A作AE⊥OC,垂足为E,
∴四边形AECD为矩形,
∴CD=AE=r,故②正确;
③若等腰三角形AOC的对称轴经过点D,如图,
∴AD=CD,而∠ADC=90°,
∴∠DAC=∠DCA=45°,又∠OCD=90°,
∴∠ACO=∠CAO=45°
∴∠DAO=90°,
∴四边形AOCD为矩形,
∴CD=AO=r,故③正确;
④过点C作CE⊥AO,垂足为E,连接DE,
∵OC⊥CD,AD⊥CD,
∴OC∥AD,
∴∠CAD=∠ACO,
∵OC=OA,
∴∠OAC=∠ACO,
∴∠CAD=∠OAC,
∴CD=CE,
在△ADC和△AEC中,
∠ADC=∠AEC,CD=CE,AC=AC,
∴△ADC≌△AEC(HL),
∴AD=AE,
∴AC垂直平分DE,则点D和点E关于AC对称,
即点D一定落在直径上,故④正确.
故正确的序号为:②③④,
故答案为:②③④.
【点评】
本题考查了折叠的性质,等边三角形的性质,等腰三角形的性质,平行线的性质,切线的性质,垂径定理,知识点较多,多为一些性质定理,解题时要逐一分析,利用性质定理进行推导.
10.(2020·江苏泰州·中考真题)如图所示的网格由边长为个单位长度的小正方形组成,点、、、在直角坐标系中的坐标分别为,,,则内心的坐标为______.
【答案】(2,3)
【解析】
【分析】
根据A、B、C三点的坐标建立如图所示的坐标系,计算出△ABC各边的长度,易得该三角形是直角三角形,设BC的关系式为:y=kx+b,求出BC与x轴的交点G的坐标,证出点A与点G关于BD对称,射线BD是∠ABC的平分线,三角形的内心在BD上,设点M为三角形的内心,内切圆的半径为r,在BD上找一点M,过点M作ME⊥AB,过点M作MF⊥AC,且ME=MF=r,求出r的值,在△BEM中,利用勾股定理求出BM的值,即可得到点M的坐标.
【详解】
解:根据A、B、C三点的坐标建立如图所示的坐标系,
根据题意可得:AB=,AC=,BC=,
∵,
∴∠BAC=90°,
设BC的关系式为:y=kx+b,
代入B,C,
可得,
解得:,
∴BC:,
当y=0时,x=3,即G(3,0),
∴点A与点G关于BD对称,射线BD是∠ABC的平分线,
设点M为三角形的内心,内切圆的半径为r,在BD上找一点M,过点M作ME⊥AB,过点M作MF⊥AC,且ME=MF=r,
∵∠BAC=90°,
∴四边形MEAF为正方形,
S△ABC=,
解得:,
即AE=EM=,
∴BE=,
∴BM=,
∵B(-3,3),
∴M(2,3),
故答案为:(2,3).
【点评】
本题考查三角形内心、平面直角坐标系、一次函数的解析式、勾股定理和正方形的判定与性质等相关知识点,把握内心是三角形内接圆的圆心这个概念,灵活运用各种知识求解即可.
三、解答题
11.(2020·湖北荆门·中考真题)如图,为的直径,为的切线,M是上一点,过点M的直线与交于点B,D两点,与交于点E,连接.
(1)求证:;
(2)若,,求的半径.
【答案】(1)见解析;(2)的半径为2.5.
【解析】
【分析】
(1)根据切线的性质得到,可得,再根据等腰三角形的性质与角度等量替换得到,故可证明;
(2)解法1,先连接BC,证明,得到EM=6,根据勾股定理求出AE,再根据列出比例式求出直径,故可求出;解法2,连接CD,同理得到,根据勾股定理求出AE,设,根据等腰三角形的性质得到CD=CE=x,再利用Rt△ACD列出方程故可求出x,再得到直径即可求解.
【详解】
(1)证明:∵为的切线,为的直径,
∴,
∴,
∴,
又∵,
∴,

∴.
(2)方法1:解:如图,连接,
∵为直径,∴,
∴,而,
∴,
又:,
∴,
∴,
∵,,∵,
∴.
∵,
∴,
∴,
∴,

∴的半径为2.5.
方法2:解:如图,连接CD,
∵,∴,
又∵,
∴,
∴,
∵为直径,∴,
∴,
而,
∴,
又∵,
∴,
∴,
∵,
∴,
∴.
设,则,
在中,
,∴,解得
∴,
∴的半径为2.5.
【点评】
此题主要考查切线的综合运用,解题的关键是熟知切线的性质、勾股定理、相似三角形的判定与性质及等腰三角形的性质.
12.(2020·西藏中考真题)在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.
(1)求二次函数的解析式;
(2)如图甲,连接AC,PA,PC,若,求点P的坐标;
(3)如图乙,过A,B,P三点作⊙M,过点P作PE⊥x轴,垂足为D,交⊙M于点E.点P在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE的长.
【答案】(1)y=x2﹣x﹣4;(2)P(3,﹣);(3)没有变化,2
【解析】
【分析】
(1)由二次函数的图象与轴交于,两点,可得二次函数的解析式为,由此即可解决问题.
(2)根据,构建方程即可解决问题.
(3)结论:点在运动过程中线段的长是定值,.根据,根据方程求出,再利用中点坐标公式,求出点的纵坐标即可解决问题.
【详解】
解:(1)二次函数的图象与轴交于,两点,
二次函数的解析式为,
即.
(2)如图甲中,连接.设.
由题意,,,


整理得,,
解得或(舍弃),

(3)结论:点在运动过程中线段的长是定值,.
理由:如图乙中,连接,,,设,,,.
由题意,,

解得,
,,



点在运动过程中线段的长是定值,.
【点评】
本题属于二次函数综合题,考查了三角形的面积,三角形的外接圆,三角形的外心等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.
13.(2020·西藏中考真题)如图所示,AB是⊙O的直径,AD和BC分别切⊙O于A,B两点,CD与⊙O有公共点E,且AD=DE.
(1)求证:CD是⊙O的切线;
(2)若AB=12,BC=4,求AD的长.
【答案】(1)见解析;(2)8
【解析】
【分析】
(1)连接OD,OE,根据切线的性质得到∠DAB=90°,根据全等三角形的性质得到∠OED=∠OAD=90°,于是得到CD是⊙O的切线;
(2)过C作CH⊥AD于H,根据已知条件推出四边形ABCH是矩形,求得CH=AB=12,AH=BC=4,根据切线的性质得到AD=DE,CE=BC,求得DH=AD﹣BC=AD﹣4,CD=AD+4,根据勾股定理即可得到结论.
【详解】
(1)证明:连接OD,OE,
∵AD切⊙O于A点,AB是⊙O的直径,
∴∠DAB=90°,
∵AD=DE,OA=OE,OD=OD,
∵△ADO≌△EDO(SSS),
∴∠OED=∠OAD=90°,
∴CD是⊙O的切线;
(2)过C作CH⊥AD于H,
∵AB是⊙O的直径,AD和BC分别切⊙O于A,B两点,
∴∠DAB=∠ABC=∠CHA=90°,
∴四边形ABCH是矩形,
∴CH=AB=12,AH=BC=4,
∵CD是⊙O的切线,
∴AD=DE,CE=BC,
∴DH=AD﹣BC=AD﹣4,CD=AD+4,
∵CH2+DH2=CD2,
∴122+(AD﹣4)2=(AD+4)2,
∴AD=8.
【点评】
本题考查了切线的判定和性质,全等三角形的判定和性质,勾股定理,矩形的判定和性质,正确的作出辅助线是解题的关键.
14.(2020·辽宁丹东·中考真题)如图,已知,以为直径的交于点,连接,的平分线交于点,交于点,且.
(1)判断所在直线与的位置关系,并说明理由;
(2)若,,求的半径.
【答案】(1)见详解;(2)的半径为.
【解析】
【分析】
(1)由AB为直径,则∠ADB=90°,由等边对等角,三角形的外角性质,得到,然后得到,即可得到结论成立;
(2)由,DF=2,则求出BD=6,然后利用勾股定理,求出AB的长度,即可得到半径.
【详解】
解:(1)∵为直径,
∴∠ADB=90°,
∴,
∵,
∴,
∴,
∵BE平分∠CBD,
∴,
∴,
∴,
∴∠ABC=90°,
∴BC是的切线;
(2)∵,
∴,
∵∠BDF=90°,
∴,
∴,
∴BD=6,
设,则AD=,
在Rt△ABD中,由勾股定理得

解得:,
∴,
∴的半径为.
【点评】
本题考查了切线的判定和性质,勾股定理,解直角三角形,等边对等角,三角形的外角性质,以及等角的余角相等,解题的关键是熟练掌握所学的知识,从而进行解题.
15.(2020·云南中考真题)如图,为⊙O的直径,为⊙O上一点,,垂足为,平分.
(1)求证:是⊙O的切线;
(2)若,,求的长.
【答案】(1)见解析(2)
【解析】
【分析】
(1)连接OC,根据角平分线及等腰三角形的性质得到∠OCD=90°,即可求解;
(2)连接BC,在Rt△ADC中,利用cos∠1=∠CAB=,求出AC=5,再根据在Rt△ABC中,cos∠CAB=,即可求出AB的长.
【详解】
(1)证明:连接OC,

∴∠ADC=90°
∴∠1+∠4=90°
∵AC平分∠DAB
∴∠1=∠2
又AO=OC,
∴∠2=∠3
∴∠1=∠3
∴∠4+∠3=90°
即∠OCD=90°
故OC⊥CD,OC是半径
∴是⊙O的切线;
(2)连接BC,
∵AB是直径,
∴∠ACB=90°
∵AC平分∠DAB,∠1=∠2
在Rt△ADC中,cos∠1=∠CAB=
又AD=4
∴AC=5
在Rt△ABC中,cos∠CAB=
∴AB=.
【点评】
此题主要考查圆的切线的判定与性质综合,解题的关键是熟知切线的判定定理及三角函数的定义.
16.(2020·江苏宿迁·中考真题)如图,在△ABC中,D是边BC上一点,以BD为直径的⊙O经过点A,且∠CAD=∠ABC.
(1)请判断直线AC是否是⊙O的切线,并说明理由;
(2)若CD=2,CA=4,求弦AB的长.
【答案】(1)见解析;(2)
【解析】
【分析】
(1)如图,连接OA,由圆周角定理可得∠BAD=90°=∠OAB+∠OAD,由等腰三角形的性质可得∠OAB=∠CAD=∠ABC,可得∠OAC=90°,可得结论;
(2)由勾股定理可求OA=OD=3,由面积法可求AE的长,由勾股定理可求AB的长.
【详解】
(1)直线AC是⊙O的切线,
理由如下:如图,连接OA,
∵BD为⊙O的直径,
∴∠BAD=90°=∠OAB+∠OAD,
∵OA=OB,
∴∠OAB=∠ABC,
又∵∠CAD=∠ABC,
∴∠OAB=∠CAD=∠ABC,
∴∠OAD+∠CAD=90°=∠OAC,
∴AC⊥OA,
又∵OA是半径,
∴直线AC是⊙O的切线;
(2)过点A作AE⊥BD于E,
∵OC2=AC2+AO2,
∴(OA+2)2=16+OA2,
∴OA=3,
∴OC=5,BC=8,
∵S△OAC=OAAC=OCAE,
∴AE=,
∴OE=,
∴BE=BO+OE=,
∴AB=.
【点评】
本题考查了切线的判定,圆的有关知识,勾股定理等知识,求圆的半径是本题的关键.
17.(2020·云南昆明·中考真题)如图,点P是⊙O的直径AB延长线上的一点(PB<OB),点E是线段OP的中点.
(1)尺规作图:在直径AB上方的圆上作一点C,使得EC=EP,连接EC,PC(保留清晰作图痕迹,不要求写作法);并证明PC是⊙O的切线;
(2)在(1)的条件下,若BP=4,EB=1,求PC的长.
【答案】(1)见解析;(2)8
【解析】
【分析】
(1)利用尺规作图:以点E为圆心,EP长为半径画弧,在直径AB上方的圆上交一点C,再根据已知条件可得OE=EC=EP,根据三角形内角和可得∠ECO+∠ECP=90°,进而证明PC是⊙O的切线;
(2)在(1)的条件下,根据BP=4,EB=1,可得EP的长,进而可得半径,再根据勾股定理即可求PC的长.
【详解】
解:(1)如图,点C即为所求;
证明:∵点E是线段OP的中点,
∴OE=EP,
∵EC=EP,
∴OE=EC=EP,
∴∠COE=∠ECO,∠ECP=∠P,
∵∠COE+∠ECO+∠ECP+∠P=180°,
∴∠ECO+∠ECP=90°,
∴OC⊥PC,且OC是⊙O的半径,
∴PC是⊙O的切线;
(2)∵BP=4,EB=l,
∴OE=EP=BP+EB=5,
∴OP=2OE=10,
∴OC=OB=OE+EB=6,
在Rt△OCP中,根据勾股定理,得PC==8.
则PC的长为8.
【点评】
本题考查了作图?复杂作图、线段垂直平分线的性质、切线的判定与性质,解决本题的关键是掌握切线的判定与性质.
18.(2020·山东淄博·中考真题)如图,在直角坐标系中,四边形OABC是平行四边形,经过A(﹣2,0),B,C三点的抛物线y=ax2+bx+(a<0)与x轴的另一个交点为D,其顶点为M,对称轴与x轴交于点E.
(1)求这条抛物线对应的函数表达式;
(2)已知R是抛物线上的点,使得△ADR的面积是平行四边形OABC的面积的,求点R的坐标;
(3)已知P是抛物线对称轴上的点,满足在直线MD上存在唯一的点Q,使得∠PQE=45°,求点P的坐标.
【答案】(1)y=﹣x2+x+;(2)(1+,4)或(1﹣,4)或(1+,﹣4)或(1﹣,﹣4);(3)P(1,120﹣168)
【解析】
【分析】
【详解】
解:(1)OA=2=BC,故函数的对称轴为x=1,则x=﹣=1①,
将点A的坐标代入抛物线表达式得:0=4a﹣2b+②,
联立①②并解得,故抛物线的表达式为:y=﹣x2+x+③;
(2)由抛物线的表达式得,点M(1,3)、点D(4,0);
∵△ADR的面积是?OABC的面积的,
∴×AD×|yR|=×OA×OB,则×6×|yR|=×2×,解得:yR=±④,
联立④③并解得,或
故点R的坐标为(1+,4)或(1﹣,4)或(1+,﹣4)或(1﹣,﹣4);
(3)作△PEQ的外接圆R,
∵∠PQE=45°,故∠PRE=90°,
则△PRE为等腰直角三角形,
当直线MD上存在唯一的点Q,则RQ⊥MD,
点M、D的坐标分别为(1,4)、(4,0),
则ME=4,ED=4﹣1=3,则MD=5,
过点R作RH⊥ME于点H,
设点P(1,2m),则PH=HE=HR=m,则圆R的半径为m,则点R(1+m,m),
S△MED=S△MRD+S△MRE+S△DRE,即×EM?ED=×MD×RQ+×ED?yR+×ME?RH,
∴×4×3=×5×m+×4×m+×3×m,解得m=60﹣84,故点P(1,120﹣168).
21世纪教育网
www.21cnjy.com
精品试卷·第
2

(共
2
页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
第24章圆24.2点和圆、直线和圆的位置关系(中考真题专练)
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.(2020·广西中考真题)如图,AB是⊙O的弦,AC与⊙O相切于点A,连接OA,OB,若∠O=130°,则∠BAC的度数是(  )
A.60°
B.65°
C.70°
D.75°
2.(2020·四川凉山·中考真题)下列命题是真命题的是(

A.顶点在圆上的角叫圆周角
B.三点确定一个圆
C.圆的切线垂直于半径
D.三角形的内心到三角形三边的距离相等
3.(2020·四川凉山·中考真题)如图,等边三角形ABC和正方形ADEF都内接于,则(

A.
B.
C.
D.
4.(2020·内蒙古赤峰·中考真题)如图,中,AB=AC,AD是∠BAC的平分线,EF是AC的垂直平分线,交AD于点O.若OA
=3,则外接圆的面积为(

A.
B.
C.
D.
5.(2012·湖北恩施·中考真题)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为(

A.3cm
B.4cm
C.6cm
D.8cm
二、填空题
6.(2020·江苏泰州·中考真题)如图,直线,垂足为,点在直线上,,为直线上一动点,若以为半径的与直线相切,则的长为_______.
7.(2020·山东东营·中考真题)如图,在中,的半径为点是边上的动点,过点作的一条切线(其中点为切点),则线段长度的最小值为____.
8.(2019·湖北荆州·中考真题)如图,为的直径,为上一点,过点的切线交的延长线于点,为弦的中点,,,若点为直径上的一个动点,连接,当是直角三角形时,的长为__________.
9.(2020·内蒙古呼和浩特·中考真题)已知为⊙O的直径且长为,为⊙O上异于A,B的点,若与过点C的⊙O的切线互相垂直,垂足为D.①若等腰三角形的顶角为120度,则;②若为正三角形,则;③若等腰三角形的对称轴经过点D,则;④无论点C在何处,将沿折叠,点D一定落在直径上,其中正确结论的序号为_________.
10.(2020·江苏泰州·中考真题)如图所示的网格由边长为个单位长度的小正方形组成,点、、、在直角坐标系中的坐标分别为,,,则内心的坐标为______.
三、解答题
11.(2020·湖北荆门·中考真题)如图,为的直径,为的切线,M是上一点,过点M的直线与交于点B,D两点,与交于点E,连接.
(1)求证:;
(2)若,,求的半径.
12.(2020·西藏中考真题)在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.
(1)求二次函数的解析式;
(2)如图甲,连接AC,PA,PC,若,求点P的坐标;
(3)如图乙,过A,B,P三点作⊙M,过点P作PE⊥x轴,垂足为D,交⊙M于点E.点P在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE的长.
13.(2020·西藏中考真题)如图所示,AB是⊙O的直径,AD和BC分别切⊙O于A,B两点,CD与⊙O有公共点E,且AD=DE.
(1)求证:CD是⊙O的切线;
(2)若AB=12,BC=4,求AD的长.
14.(2020·辽宁丹东·中考真题)如图,已知,以为直径的交于点,连接,的平分线交于点,交于点,且.
(1)判断所在直线与的位置关系,并说明理由;
(2)若,,求的半径.
15.(2020·云南中考真题)如图,为⊙O的直径,为⊙O上一点,,垂足为,平分.
(1)求证:是⊙O的切线;
(2)若,,求的长.
16.(2020·江苏宿迁·中考真题)如图,在△ABC中,D是边BC上一点,以BD为直径的⊙O经过点A,且∠CAD=∠ABC.
(1)请判断直线AC是否是⊙O的切线,并说明理由;
(2)若CD=2,CA=4,求弦AB的长.
17.(2020·云南昆明·中考真题)如图,点P是⊙O的直径AB延长线上的一点(PB<OB),点E是线段OP的中点.
(1)尺规作图:在直径AB上方的圆上作一点C,使得EC=EP,连接EC,PC(保留清晰作图痕迹,不要求写作法);并证明PC是⊙O的切线;
(2)在(1)的条件下,若BP=4,EB=1,求PC的长.
18.(2020·山东淄博·中考真题)如图,在直角坐标系中,四边形OABC是平行四边形,经过A(﹣2,0),B,C三点的抛物线y=ax2+bx+(a<0)与x轴的另一个交点为D,其顶点为M,对称轴与x轴交于点E.
(1)求这条抛物线对应的函数表达式;
(2)已知R是抛物线上的点,使得△ADR的面积是平行四边形OABC的面积的,求点R的坐标;
(3)已知P是抛物线对称轴上的点,满足在直线MD上存在唯一的点Q,使得∠PQE=45°,求点P的坐标.
21世纪教育网
www.21cnjy.com
精品试卷·第
2

(共
2
页)
21世纪教育网(www.21cnjy.com)