北师大版九年级数学上册第三章概率的进一步认识同步测试(word版含答案)

文档属性

名称 北师大版九年级数学上册第三章概率的进一步认识同步测试(word版含答案)
格式 zip
文件大小 470.1KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2020-09-28 14:34:16

图片预览

文档简介

北师大版九年级数学上册第三章概率的进一步认识 同步测试
一.选择题
1.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是(
)
A.频率就是概率
B.频率与试验次数无关
C.概率是随机的,与频率无关
D.随着试验次数的增加,频率一般会越来越接近概率
2.
在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸出一个球,那么两次都摸到黄球的概率是(
)
A.
B.
C.
D.
3.五一期间刚到深圳的小明在哥哥的陪伴下,打算上午从莲山春早、侨城锦绣、深南溢彩中随机选择一个景点,下午从梧桐烟云、梅沙踏浪、一街两制中随机选择一个景点,小明恰好上午选中莲山春早,下午选中梅沙踏浪的概率是(

A.
B.
C.
D.
4.有3个整式x,x+1,2,先随机取一个整式作为分子,再从余下的整式中随机取一个作为分母,恰能组成分式的概率是(  )
A.
B.
C.
D.
5.某超市举行购物“翻牌抽奖”活动,如图所示,四张牌分别对应价值5,10,15,20(单位:元)的四件奖品,如果随机翻两张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总价值不低于30元的概率为(
)
A.
B.
C.
D.
6.
如图,随机闭合开关S1,S2,S3中的两个,则灯泡发光的概率是(
)
A.
B.
C.
D.
有三张正面分别写有数字-2,-1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为点P的横坐标,然后再从剩余的两张卡片中随机抽取一张,以其正面的数字作为点P的纵坐标,则点P在第二象限的概率是(

A.
B.
C.
D.
8.某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下表格,则符合这一结果的试验最有可能的是(  ) 
试验次数
100
200
300
500
800
1000
2000
频率
0.365
0.328
0.330
0.334
0.336
0.332
0.333
A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
C.抛一个质地均匀的正六面体骰子,向上的面点数是5
D.抛一枚硬币,出现反面的概率
9.一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于n2,则算过关;否则不算过关,则能过第二关的概率是(
)
A.
B.
C.
D.
10.
如图,在平面直角坐标系中,点A1,A2在x轴上,点B1,B2在y轴上,其坐标分别为A1(1,0),A2(2,0),B1(0,1),B2(0,2),分别以A1,A2,B1,B2其中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是(
)
A.
B.
C.
D.
二.填空题
11.做任意抛掷一只纸杯的重复试验,记录杯口朝上的次数,获得如下数据:
抛掷总次数
100
150
200
300
杯口朝上的频数
21
32
44
66
估计任意抛掷一只纸杯,杯口朝上的概率是________.
12.从-1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为________.
13.有两个不透明的盒子,第一个盒子中有3张卡片,上面的数字分别为1,2,2;第二个盒子中有5张卡片,上面的数字分别为1,2,2,3,3.这些卡片除了数字不同外,其它都相同,从每个盒子中各抽出一张,都抽到卡片数字是2的概率为____.
14.如图,一只蚂蚁从A点出发到D,E,F处寻觅食物.假定蚂蚁在每个岔路口都等可能的随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口).那么,蚂蚁从A出发到达E处的概率是
.
15.今年某市中考增加了体育测试科目,考生考试顺序和考试项目(考生从考试的各个项目中抽取一项作为考试项目)由抽签的方式决定,具体操作流程:①每位考生从写有A,B,C的三个小球中随机抽取一个小球确定考试组别;②再从写有“引体向上”“立定跳远”“800米”的抽签纸中抽取一个考试项目进行测试,则考生小明抽到A组“引体向上”的概率是______.
16.如果任意选择一对有序整数(m,n),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的可能性是相等的,那么关于x的方程x2+nx+m=0有两个相等实数根的概率是________.
解答题
17.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.
(1)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.
(2)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.
18.
小明有2件上衣,分别为红色和蓝色,有3条裤子,其中2条为蓝色、1条为棕色.小明任意拿出1件上衣和1条裤子穿上.请用画树状图或列表的方法列出所有可能出现的结果,并求小明穿的上衣和裤子恰好都是蓝色的概率.
19.王老师将1个黑球和若干个白球(这些球除颜色外都相同)放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出1个球(有放回),下表是活动进行中的一组统计数据.
摸球的次数n
100
150
200
500
800
1000
摸出黑球的次数m
23
31
60
130
203
251
摸到黑球的频率
0.23
0.207
0.30
0.26
0.254
0.251
(1)根据上表数据估计从袋中摸出1个球是黑球的概率是_________;
(2)估计袋中白球的个数.
20.九年级某班组织全班活动,班委会准备买一些奖品.班长王倩拿15元钱去商店全部用来购买圆珠笔和铅笔两种奖品,已知圆珠笔的价格为2元/支,铅笔的价格为1元/支,且每种笔至少买一支.
(1)有多少种购买方案?请列举所有可能的结果;
(2)从上述方案中任选一种方案购买,求买到的圆珠笔与铅笔数量相等的概率.
21.在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.
(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是______;
(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率(用树状图或列表法求解).
22.
甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为-7,-1,3.乙袋中的三张卡片所标的数值为-2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x,y分别作为点A的横坐标和纵坐标.
(1)用适当的方法写出点A(x,y)的所有情况;
(2)求点A落在第三象限的概率.
如图,有两部不同型号的手机(分别记为A,B)和与之匹配的2个保护盖(分别记为a,b)散乱地放在桌子上.
(1)若从手机中随机取一部,再从保护盖中随机取一个,求恰好匹配的概率;
(2)若从手机和保护盖中随机取两个,用画树状图法或列表法求恰好匹配的概率.
五一假期,某公司组织部分员工分别到A,B,C,D四地旅游,公司按定额购买了前往各地的车票.图4是未制作完的车票种类和数量的条形统计图,根据统计图回答下列问题:
(1)若去D地的车票占全部车票的10%,求去D地车票的数量,并补全条形统计图;
(2)若公司采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),则员工小胡抽到去A地的车票的概率是多少?
(3)若有一张车票,小王、小李都想要,最后决定采取抛掷一枚各面分别标有数字1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李”.试用列表或画树状图的方法分析这个规则对双方是否公平.
图4
25.小明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为.
(1)求袋中黄球的个数;
(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率;
(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个求,摸后放回)得20分,问小明有哪几种摸法?
答案提示
1.D
2.
C
3.C
4.C
5.
C
6.
B
7.B
8.B
9.A
10.
D
11.0.22
12.
13.
14.
15. 
16. 
17.解:(1) (2)画树状图略,所有出现的等可能性结果共有12种,其中满足条件的结果有2种.∴P(恰好选中甲、乙两位同学)=
18.
解:画树状图:
P(都是蓝色)==
19.解:(1)0.25
(2)设袋中白球为x个,依题意有=0.25,(4分)解得x=3.
答:估计袋中有3个白球.
20.解:(1)设买圆珠笔x支,铅笔y支,
则2x+y=15,所以y=15-2x.
当x=1时,y=13;
当x=2时,y=11;
当x=3时,y=9;
当x=4时,y=7;
当x=5时,y=5;
当x=6时,y=3;
当x=7时,y=1.
所以共有7种购买方案.
(2)在这7种方案中,买到的圆珠笔与铅笔数量相等的只有1种,所以P(买到的圆珠笔与铅笔数量相等)=.
21.解:(1)
(2)用树状图列出所有可能的结果:
∵以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,
∴所画的四边形是平行四边形的概率P==
22.
 
-7
-1
3
-2
(-7,-2)
(-1,-2)
(3,-2)
1
(-7,1)
(-1,1)
(3,1)
6
(-7,6)
(-1,6)
(3,6)
可知,点A共有9种情况 (2)由(1)知点A的坐标共有9种等可能的情况,点A落在第三象限(事件A)共有(-7,-2),(-1,-2)两种情况,∴P(A)=
23.解:(1)从手机中随机抽取一个,再从保护盖中随机取一个,有Aa,Ab,Ba,Bb四种结果,每种结果出现的可能性相同.
其中,恰好匹配的结果有两种:Aa,Bb,
∴P(恰好匹配)==;
(2)画树状图如下:
总共有12种结果,每种结果出现的可能性相同.
其中,恰好匹配的结果有4种,(9分)∴P(恰好匹配)==.
24.解:(1)设去D地的车票有x张,则x=(x+20+40+30)×10%,解得x=10.
答:去D地的车票有10张.
补全条形统计图如图所示.
(2)小胡抽到去A地的车票的概率为=.
答:员工小胡抽到去A地的车票的概率是.
(3)列表如下:
 
    小李掷得的数字
小王掷得的数字    
 
1
2
3
4
1
(1,1)
(1,2)
(1,3)
(1,4)
2
(2,1)
(2,2)
(2,3)
(2,4)
3
(3,1)
(3,2)
(3,3)
(3,4)
4
(4,1)
(4,2)
(4,3)
(4,4)
由此可知,共有16种等可能的结果,其中小王掷得的数字比小李掷得着地一面的数字小的有6种:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),
∴小王掷得着地一面的数字比小李掷得的着地一面数字小的概率为=.
则小王掷得着地一面的数字不小于小李掷得的着地一面数字的概率为1-=.
∵≠,∴这个规则对双方不公平.
25.解:(1)1个
(2)画树状图如下,
所以两次摸到不同颜色球的概率为:P==
(3)设小明摸到红球x次,摸到黄球y次,则摸到红球有(6-x-y)次,由题意得5x+3y+(6-x-y)=20,即2x+y=7,y=7-2x.因为x、y、(6-x-y)均为自然数,所以当x=1时,y=5,6-x-y=0;当x=2时,y=3,6-x-y=1;当x=3时,y=1,6-x-y=2;综上:小明共有三种摸法:摸到红、黄、蓝三种球分别为1次、5次、0次;或2次、2次、1次;或3次、1次、2次