专题13.4 课题学习 最短路径问题 2020-2021学年数学八上精讲精练(人教版)(原卷+解析)

文档属性

名称 专题13.4 课题学习 最短路径问题 2020-2021学年数学八上精讲精练(人教版)(原卷+解析)
格式 zip
文件大小 12.1MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2020-09-29 14:40:50

文档简介

中小学教育资源及组卷应用平台
专题13.4
最短路径问题
知识点解读
1.最短路径问题
(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.
如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.
(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.
如图所示,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点.
为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下:
证明:由作图可知,点B和B′关于直线l对称,
所以直线l是线段BB′的垂直平分线.
因为点C与C′在直线l上,
所以BC=B′C,BC′=B′C′.
在△AB′C′中,AB′<AC′+B′C′,
所以AC+B′C<AC′+B′C′,
所以AC+BC<AC′+C′B.
2.运用轴对称解决距离最短问题
运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.
利用轴对称解决最值问题应注意题目要求 根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.
3.利用平移确定最短路径选址
选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.
解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.
在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.
4.生活中的距离最短问题
由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想办法转化在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段通过类似于镜面反射的方式转化成一条线段,如图,AO+BO=AC的长.所以作已知点关于某直线的对称点是解决这类问题的基本方法.
5.运用轴对称解决距离之差最大问题
利用轴对称和三角形的三边关系是解决几何中的最大值问题的关键.先做出其中一点关于对称轴的对称点,然后连接对称点和另一个点,所得直线与对称轴的交点,即为所求.根据垂直平分线的性质和三角形中两边之差小于第三边易证明这就是最大值.
破疑点
解决距离的最值问题的关键 运用轴对称变换及三角形三边关系是解决一些距离的最值问题的有效方法.
对点例题解析
【例题1】
在图中直线l上找到一点M,使它到A,B两点的距离和最小.
 
【例题2】如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水.
(1)若要使厂部到A,B村的距离相等,则应选择在哪建厂?
(2)若要使厂部到A,B两村的水管最短,应建在什么地方?
【例题3】如图,从A地到B地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直的桥,应如何选择桥的位置才能使从A地到B地的路程最短?
【例题4】如图所示,A,B两点在直线l的两侧,在l上找一点C,使点C到点A、B的距离之差最大.
 
达标训练题
1.直线l左侧有两点P、Q,试在直线上确定一点O,使得OP+OQ最短.
2.如图,△ABC与△DEF关于某条直线对称,请画出对称轴.
3.如图,A、B为重庆市内两个较大的商圈,现需要在主要交通干道l上修建一个轻轨站P,问如何修建,才能使得人们出行逛街更便捷.
4.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为(

A.130°
B.120°
C.110°
D.100°
5.如图,两条公路OA、OB相交,在两条公路的中间有一个油库,设为点P,如在两条公路上各设置一个加油站,,请你设计一个方案,把两个加油站设在何处,可使运油车从油库出发,经过一个加油站,再到另一个加油站,最后回到油库所走的路程最短.
21世纪教育网
www.21cnjy.com
精品试卷·第
2

(共
2
页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题13.4
最短路径问题
知识点解读
1.最短路径问题
(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.
如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.
(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.
如图所示,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点.
为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下:
证明:由作图可知,点B和B′关于直线l对称,
所以直线l是线段BB′的垂直平分线.
因为点C与C′在直线l上,
所以BC=B′C,BC′=B′C′.
在△AB′C′中,AB′<AC′+B′C′,
所以AC+B′C<AC′+B′C′,
所以AC+BC<AC′+C′B.
2.运用轴对称解决距离最短问题
运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.
利用轴对称解决最值问题应注意题目要求 根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.
3.利用平移确定最短路径选址
选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.
解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.
在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.
4.生活中的距离最短问题
由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想办法转化在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段通过类似于镜面反射的方式转化成一条线段,如图,AO+BO=AC的长.所以作已知点关于某直线的对称点是解决这类问题的基本方法.
5.运用轴对称解决距离之差最大问题
利用轴对称和三角形的三边关系是解决几何中的最大值问题的关键.先做出其中一点关于对称轴的对称点,然后连接对称点和另一个点,所得直线与对称轴的交点,即为所求.根据垂直平分线的性质和三角形中两边之差小于第三边易证明这就是最大值.
破疑点
解决距离的最值问题的关键 运用轴对称变换及三角形三边关系是解决一些距离的最值问题的有效方法.
对点例题解析
【例题1】
在图中直线l上找到一点M,使它到A,B两点的距离和最小.
 
【答案】见解析。
【解析】先确定其中一个点关于直线l的对称点,然后连接对称点和另一个点,与直线l的交点M即为所求的点.
如图所示:(1)作点B关于直线l的对称点B′;
(2)连接AB′交直线l于点M.
(3)则点M即为所求的点.
【例题2】如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水.
(1)若要使厂部到A,B村的距离相等,则应选择在哪建厂?
(2)若要使厂部到A,B两村的水管最短,应建在什么地方?
【答案】见解析。
【解析】到A,B两点距离相等,可联想到“线段垂直平分线上的点到线段两端点的距离相等”,又要在河边,所以作AB的垂直平分线,与EF的交点即为符合条件的点.要使厂部到A村、B村的距离之和最短,可联想到“两点之间线段最短”,作A(或B)点关于EF的对称点,连接对称点与B点,与EF的交点即为所求.
(1)如图1,取线段AB的中点G,过中点G画AB的垂线,交EF于P,则P到A,B的距离相等.也可分别以A、B为圆心,以大于AB为半径画弧,两弧交于两点,过这两点作直线,与EF的交点P即为所求.(2)如图2,画出点A关于河岸EF的对称点A′,连接A′B交EF于P,则P到A,B的距离和最短.
【例题3】如图,从A地到B地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直的桥,应如何选择桥的位置才能使从A地到B地的路程最短?
【答案】见解析。
【解析】从A到B要走的路线是A→M→N→B,如图所示,而MN是定值,于是要使路程最短,只要AM+BN最短即可.此时两线段应在同一平行方向上,平移MN到AC,从C到B应是余下的路程,连接BC的线段即为最短的,此时不难说明点N即为建桥位置,MN即为所建的桥.
(1)如图2,过点A作AC垂直于河岸,且使AC等于河宽.
(2)连接BC与河岸的一边交于点N.
(3)过点N作河岸的垂线交另一条河岸于点M.
则MN为所建的桥的位置.
【例题4】如图所示,A,B两点在直线l的两侧,在l上找一点C,使点C到点A、B的距离之差最大.
 
【答案】见解析。
【解析】此题的突破点是作点A(或B)关于直线l的对称点A′(或B′),作直线A′B(AB′)与直线l交于点C,把问题转化为三角形任意两边之差小于第三边来解决.
如图所示,以直线l为对称轴,作点A关于直线l的对称点A′,A′B的连线交l于点C,则点C即为所求.理由:在直线l上任找一点C′(异于点C),连接CA,C′A,C′A′,C′B.因为点A,A′关于直线l对称,所以l为线段AA′的垂直平分线,则有CA=CA′,所以CA-CB=CA′-CB=A′B.又因为点C′在l上,所以C′A=C′A′.在△A′BC′中,C′A-C′B=C′A′-C′B<A′B,所以C′A′-C′B<CA-CB.
达标训练题
1.直线l左侧有两点P、Q,试在直线上确定一点O,使得OP+OQ最短.
【答案】
【解析】轴对称变换的运用。利用轴对称解决最短路径问题.作点P关于直线l的对称点A,连接AQ交直线l与点O即为所求.
2.如图,△ABC与△DEF关于某条直线对称,请画出对称轴.
【答案】
【解析】任意一对对应点之间的连线被对称轴垂直平分。根据对称图形确定对称轴的位置,注意垂直平分线的画法.连接AD,作线段AD的垂直平分线.
3.如图,A、B为重庆市内两个较大的商圈,现需要在主要交通干道l上修建一个轻轨站P,问如何修建,才能使得人们出行逛街更便捷.
【答案】
【解析】利用轴对称解决最短路径问题。作点A关于直线l的对称点A’,再连接A’B,交直线l于点P,点P即为所求.
4.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为(

A.130°
B.120°
C.110°
D.100°
【答案】B
【解析】考点有轴对称(最短路线问题),三角形三边关系,三角形外角性质,等腰三角形的性质。
根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和ED的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案:
如图,作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值。作DA延长线AH。
∵∠BAD=120°,∴∠HAA′=60°。
∴∠AA′M+∠A″=∠HAA′=60°。
∵∠MA′A=∠MAA′,∠NAD=∠A″,
且∠MA′A+∠MAA′=∠AMN,
∠NAD+∠A″=∠ANM,
∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″
=2(∠AA′M+∠A″)=2×60°=120°。
5.如图,两条公路OA、OB相交,在两条公路的中间有一个油库,设为点P,如在两条公路上各设置一个加油站,,请你设计一个方案,把两个加油站设在何处,可使运油车从油库出发,经过一个加油站,再到另一个加油站,最后回到油库所走的路程最短.
【答案】见解析。
【解析】这是一个实际问题,我们需要把它转化为数学问题,经过分析,我们知道此题是求运油车所走路程最短,OA与OB相交,点P在∠AOB内部,通常我们会想到轴对称,分别做点P关于直线OA和OB的对称点P1、P2
,连结P1P2分别交OA、OB于C、D,C、D两点就是使运油车所走路程最短,而建加油站的地点,那么是不是最短的呢?我们可以用三角形的三边关系进行说明.
分别做点P关于直线OA和OB的对称点P1、P2,
连结P1P2分别交OA、OB于C、D,
则C、D就是建加油站的位置.
若取异于C、D两点的点,
则由三角形的三边关系,可知在C、D两点建加油站运油车所走的路程最短.
21世纪教育网
www.21cnjy.com
精品试卷·第
2

(共
2
页)
21世纪教育网(www.21cnjy.com)