青岛版八年级上第三章分式预习学案

文档属性

名称 青岛版八年级上第三章分式预习学案
格式 zip
文件大小 137.1KB
资源类型 教案
版本资源 青岛版
科目 数学
更新时间 2011-09-18 21:29:23

图片预览

文档简介

数学学科八年级上册预习案设计
第三章 第 1 节 第 一 课时 (总第 课时)
分式基本性质(1)
一、预习目标:1、预习分式的概念,并能判断一个有理式是不是分式。
2、通过预习了解分式的意义,学会推断分式的分母中所含字母的取值范围。   
3、通过预习分式的意义,培养学生的逆向思维能力和学生的辩证唯物主义观点。  
二、预习重点:分式的意义:分式与整式的区别及联系;
三、预习任务:
(一)预习准备
1)、武威文庙距学校30千米,公交车的速度为50千米/时,那么经过多长时间到达文庙博物馆?  
2)、我们有a名老师b名学生,买门票需付多少钱呢?  
3)、文庙博物馆设有k个展厅,建筑面积共为 3000平方米 ,你知道平均每个展厅有多少平方米吗?  
4)、博物馆有壁式展柜p个,展出馆藏文物m件,平均每个壁式展柜展出多少件文物呢?另有独立式展柜q个,展出文物n件,平均每个展柜展出多少件文?
(二)预习新知
任务一:分式的概念
1、像 , ,这样的代数式我们叫-----____那么对于两个整式A,B;如果是分式(有意义)A、B应满足的条件是什么?
2、判断哪些是整式 ?哪些是分式?
(1)-2.5x;(2);(3)-5xy;(4)-5y;(5); (6);(7); (8)+3x.
任务二:
已知x=3,求整式x+1和x-1的值。
已知x=3,你会求分式 的值吗?对于分式:
(1)当x取什么数时,分式有意义?(2)当x=1时,分式的值是多少?(3)当x取什么数时,分式的值为0?  
(三)预习总结:
四、预习诊断:
1.若分式的值为零,则x的值是( )
A.2或-2 B.2 C.-2 D.4
2.把下列有理式中是分式的代号填在横线上 .
(1)-3x;(2);(3);(4)-;(5) ; (6);(7)-; (8).
五、预习疑惑:
八年级上册预习案
第三章 第1节 第二课时(总第 课时)
分式基本性质(2)
一、预习目标:1.了解分式的基本性质,会用基本性质化简分式。
2.通过预习理解分式的恒等变形。
二、预习重点:分式的分子、分母及分式本身的符号变号规律。
三、预习任务:
(一)预习准备
1.判断下列整式是否相等:(1)=(2)=(3)=(4)=
2.在下面的括号内填上适当的数,使等式成立
(1)= (2)=
(3)= (4)=
(二)预习新知
任务一:分式的基本性质
1. 根据分式的性质填空
(1);  (2)
2. 下列分式中,计算正确的是( )
A.= B.;C. =-1;D.
分式的基本性质是:
任务二:变号规律
不改变分式的值,使下列分式的分子与分母都不含负号
(1) (2) (3)
(三)预习总结:
四、预习诊断:
1.下列各式中,正确的是( )
A.=; B.=; C.=; D.=
2.下列各式与相等的是( )
A、 B、 C、 D、.
3.如果把分式中的x和y都扩大2倍,即分式的值( )
A、扩大4倍; B、扩大2倍; C、不变; D缩小2倍
五、预习疑惑:
第3章第2节 第 课时 (总第 课时)
分式的约分
一、预习目标:1、了解约分和最简分式的概念,理解约分的依据是分式的基本性质。
2、能熟练的对分式进行约分,并会利用分式的约分进行整式的除法运算。
3、在对分式进行约分的过程中体会分式的基本性质的应用。
二、预习重点:体会分式约分的依据,会对分式进行约分。
三、预习任务
(一)预习准备
1、分式的基本性质为:__________________________________________________.
用字母表示为:______________________.
2、把下列分数化为最简分数:=_____; =______; =______.
想一想,分数约分的依据是什么
(二)预习新知 阅读教材56页——57页,完成下列预习任务
任务一:确定分式中分子和分母的公因式
1、根据分数的约分,化简下面的分式
=_____;=_______ HYPERLINK "http://www.1230.org" =__________
2、类比分数的约分,我们利用分式的基本性质,约去的分子分母中的公因式a不改变分式的值,这样的分式变形叫做分式的_____ 其中约去的a叫做________同理分式中的公因式是__________
3、找出下列分式中分子分母的公因式
⑴ ⑵ ⑶ ⑷ ⑸
任务二:最简分式
1、下列分式能否再化简?为什么?
(1) (2) (3)- (4)
2、最简分式
任务三:分式的约分
1、将下列分式约分
(三)预习总结
1、如何找分式中分子和分母的公因式?
2分式约分的步骤
⑴ ⑵ ⑶ ⑷
2、计算
(1)8a2b÷24ab2 (2)(x2-1)÷(x2-2x+1)
四、预习诊断
1、分式,,,中是最简分式的有( )
A.1个 B.2个 C.3个 D.4个
2、,则?处应填上_________,其中条件是__________.
3、下列约分正确的是( )
A B HYPERLINK "http://www.1230.org" C D
4、约分:
(1); (3)
5、化简求值:
其中
五、预习困惑
第三章 第 3 节 第 一 课时 (总第 课时)
分式的乘法与除法
一、预习目标:1、预习分式的乘法法则。
2、预习分式的除法法则。  
3、会利用分式的乘法、除法法则进行简单的运算。
二、预习重点:分式的乘除法法则。
三、预习任务:
(一)预习准备
1)、分式的基本性质
2)、最简分式
3)下列约分正确的是( )
(A)、; (B)、; (C)、; (D)、
(二)预习新知
任务一:分式的乘法法则
1、×= 你会算吗?你是怎样计算的?
2、 如果字母a、b、 c 、d都是整式,你会进行下面的计算吗?
.=
3、你能总结分式的乘法法则吗?
任务二:分式的除法法则
1、÷= 你会计算吗?
2、你能总结分式的除法法则吗?
  
(三)预习总结:
四、预习诊断:
1. = = ;
2. =
3、=
五、预习疑惑:
数学学科八年级上册预习案设计
第3章第4节 第 课时 (总第 课时)
分式的通分
一.预习目标:
1、理解分式通分、最简公分母的概念。
2、掌握通分的方法,并能熟练地进行通分。
3、能正确熟练地找最简公分母。
4.在对分式通分的过程中体会分式基本性质的应用。
二.预习重点:分式的通分
三.预习任务
(一)预习准备
1.分式的基本性质为:__________________________________________________.
用字母表示为:______________________.
2.举例说明什么是分数的通分?通分的根据是什么?
3.把下列分数通分:
(1)与 (2)与
(二)预习新知
任务一:确定最简公分母
(1)的最简公分母是 。
(2)分式,的最简公分母是 。
确定最简公分母的方法:
当各分母都是单项式时,
当分母是多项式时,
分式通分的根据是: 。
任务二:通分
把下列各题中的分式通分:
(1) , , ;
(3)
(三).预习总结:
确定最简公分母的方法是:
分式的通分的根据:
分式通分的步骤是:
四.预习诊断:
1.填空:
(1)的最简公分母是_________,通分后的两个分式分别是: 与
(2)分式 的最简公分母是_________,通分后的两个分式分别是: 与
2.通分:
(1) , ,,
(2)
五.预习困惑:
数学学科八年级上册第三章第五节第一课时
第三章第五节《分式的加法和减法》 第一课时 (总第 课时)
分式的加法和减法(一)
一、预习目标:1.了解同分母分式的加减法运算法则.
2.会进行简单的同分母分式的加减法运算,在计算过程中,能明确算理.
3.在学习中,进一步体会类比思想,转化思想在数学中的应用。
二、预习重点:同分母分式的加减法
三、预习任务
(一)预习准备
计算: ,
2、举例说明同分母分数加法和减法的法则。
3、说出分式的符号法则。
(二)预习新知
任务一:探索同分母分式的加法和减法法则:
仿造同分母分数加法和减法的法则,尝试做下面的题目:
,
任务二:总结同分母分式的加法和减法法则。
同分母的分式相加减,分母______,把分子相_________.
任务三:利用同分母分式的加法和减法法则进行计算:
(三)预习总结
1、同分母分式的加减法,其法则与分数相似——分母不变,分子相加减。
2、分子若是多项式应该添上括号把它作为一个整体,再相加减。可避免计算出错。
3、计算结果要化成最简形式
四、预习诊断
1.同分母的分式相加减__________________________,用式子表示则为___.
2.填空:
=
(.
3.一只袋了中有m个球,其中有n个是红球,其余都是黑球,从袋中任意取一个球,取到红球的概率是______,取到黑球的概率是________,则两者的概率之和=_____+_______=________.
五、预习困惑
第三章第五节第2课时 (总第 课时)
分式的加法与减法
一.预习目标:1.经历实际问题的解决过程,并能概括异分母的分式相加减的法则。
2.通过简单的异分母分式的加减运算,能说明计算过程中的算理。
3.培养学生用类比的方法探索新知识的能力
二.预习重点:异分母分式相加减法则的熟练运用
三.预习任务
预习准备
1. 计算:(1) +- (2) --
2、计算:
(二)预习新知
任务一:探究找最简公分母的方法
请你类比做一做
1、计算:
思考:先确定最简公分母为 ,再把 分母化成 分母然后相加。
2、计算:
思考:你能说说找最简公分母的方法吗?
任务二:分母是乘积形式的异分母分式加、减
试试看:
1、通分:(1) (2)
2、 计算:(1), (2)
任务三:分母是多项式的异分母分式加、减
1、通分:
思考:先把分母 ,然后确定 。
2、 计算:(1), (2)
(三)预习总结
异分母分式的加减法步骤:
1. 正确地找出各分式的最简 。
求最简公分母概括为:
(1)取各分母系数的 ;
(2)凡出现的字母为底的幂的因式 取;
(3)相同字母的幂的因式取指数最 的。取这些因式的 就是最简公分母。
2. 准确地得出各分式的分子、分母应乘的因式。
3. 用公分母通分后,进行 分母分式的加减运算。
4. 公分母保持积的形式,将各分子展开。
5. 将得到的结果化成 。
四、预习诊断
1、计算等于 。
2、分式,,的最简公分母是 ( )
A、12a2b4c2 B、24a2b4c2 C、24a4b6c D、12a2b4c
3、某厂储存了t天用的煤m吨,要使储存的煤比预定的多用d天,那么每天应节约煤的吨数为 ( )
A、 B、
C、 D、
4. 计算:
(1)+ (2)
五、预习困惑:
数学学科八年级上册预习案设计
第三章第 六 节 第 二 课时 (总第 课时) 比和比例(2)一预习目标:1、了解比例的概念,掌握比例的基本性质。2、会用比例的基本性质进行简单的比例变形和有关的计算。3、会运用比例的基本性质解决有关的实际问题。二预习重点:比例的基本性质及其相应的计算。三预习任务(一)、预习准备 已知⊙O1的半径r1=2,⊙O2的半径r2=3,回答下列问题:(1)⊙O1的周长L1= , ⊙O2的周长L2= ;(2)r1 :r2= ,L1: L2= 。你发现了什么?与同伴交流。(二)、预习新知任务一:掌握比例的基本性质: 1、 的式子叫做比例式,简称比例。 2、 叫做比例外项, 叫做比例内项。 3、比例的基本性质是:任务二:预习课本70-71页的例3 –例5,并用不同于课本的方法解例3的(2) 解:(2)任务三:挑战自我:已知==,其中b,d,f均不为0,且b+d+f≠0,与相等吗?为什么?(三)、预习总结:四预习诊断1、2a=3b,那么= 。2、已知:=,求的值3、在同一时刻一根长为15米的竹竿影长为10米,一幢建筑物的影长为20米,试求此建筑物的高。预习困惑:
中数学八年级上册课后检测
第三章第六节
第 3 章第 2节 第 1 课时 (总第 课时) 分式基本性质一、预习目标:在预习活动中让学生体验数学与生活实际的密切联系,培养学生的数学应用意识,激发学生成功学习数学和自信心和创新意识,渗透事物间是相互联系的辩证唯物主义观点。二、预习重点:1.使学生进一步掌握比和比例的意义、性质,能正确迅速地解比例、化简比和求比值。2.进一步理解比例尺的意义,能应用比例尺的知识求出平面图的比例尺以及根据比例尺求图上距离和实际距离。三、预习任务(一)预习准备 1、回忆小学时学习的比的定义和性质。2、思考分数和比的区别和联系。(二)预习新知任务一:比的定义; 叫做a与b的比。记作 其中a叫做比的 b 叫做比的 。任务二:化简下面的比 1.18a:16b 3.36a:12b2.50x:15 4.48x:16y任务三:1 八年级一班42名,如果男、女生的比是4:3,哪么该班女生有多少名?2如图时代中学的校园有两块草坪,草坪甲是正方形长为a,中间有一个正方形的喷水池长为 b,草坪乙是长方形长为c宽为a-b ,求甲、乙两块草坪的面积 的比。 (三)预习总结 四、预习诊断1.把下面的比写成分式的形式,并化简。 (1)45a:9a2(2)16xy2:6xy2(3)(x+y):(x2-y2)(4)b:(b2+2b)2.小军家每月的收入是4500元,如果日常生活开支的款项与储蓄款项的比是4:5,那么小军家每月的储蓄多少元?预习困惑:
数学学科八年级下册预习案设计
数学学科八年级上册预习案设计
第三章第 六 节 第 三 课时 (总第 课时) 比和比例(3)一预习目标:1、简述比例的概念,复述比例的基本性质。2、会用比例的基本性质进行简单的比例变形和有关的计算。3、会运用比例的基本性质解决有关的实际问题。二预习重点:比例的基本性质的灵活应用。三预习任务(一)、预习准备 1、简述比例和比例的基本性质2、5a=3b,那么= 。3、已知:=,求的值3、在同一时刻一根长为25米的竹竿影长为20米,一幢建筑物的影长为20米,试求此建筑物的高。(二)、预习新知任务一:预习课本72页交流与发现思考下面的问题:甲的分红:乙的分红= 乙的分红:丙的分红= 按照上面的结果,可以把甲、乙、丙三人的分红的比写成甲的分红:乙的分红:丙的分红= 任务二:预习课本73页的例6,并试着独立解出。 解:任务三:挑战自我:预习课本例7,试着做下列练习三角形的周长为104厘米,三边长的比是3:4:6,求三条边的长。解: (三)、预习总结:四、预习诊断1、已知x:y=3:4,y:z=6:7,求连比x:y:z2、已知:=,求的值3、制作某种蛋糕的原料有面粉、鸡蛋和糖,如果这几种原料得比是11:8.5:4.5,那么制作一个480克的蛋糕需要原料各多少?预习困惑:
数学学科八年级上册预习案设计
第三章 第七节 第 1 课时 (总第 课时)
分式方程(1)
一、预习目标:1.能够从现实生活中抽象出数学问题,利用问题中的等量关系列出分式方程。
2. 了解分式方程的意义,初步掌握分式方程的定义。
二、预习重点:根据分式方程的定义找出分式方程的特点。
三、预习任务
(一)预习准备:举例曾经学习过的一元一次方程,并根据举例概括一元一次方程的定义。
(二)预习新知:
任务一:面对日益严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一定期限内固沙造林2400公顷,实际每月固沙造林比原计划多30公顷,结果提前4个月完成原计划任务。原计划每月固沙造林多少公顷?
这一问题有哪些等量关系?
如果设原计划每月固沙造林x公顷,那么
原计划完成一期工程需要 个月,
实际完成一期工程用了 个月。
根据题意,可得方程
任务二:为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款,已知第一次捐款总额为 4800元,第二次捐款总额为5000元,第二次捐款人数第一次多20人。而且两次人均捐款额恰好相等。如果设第一次捐款人数为x人,那么x满足怎样的方程?
任务三:根据上面得到的两个方程,找出它们的共同特点。
预习总结 分式方程的定义
四 预习诊断
1. 哪些是分式方程?
2.一个正多边形的每个内角都是172 ,求它的边数n满足的分式方程。
3. 某面粉厂现在平均每小时比原计划多生产面粉330kg,已知现在生产面粉33000kg所需的时间和原计划生产23100kg面粉的时间相同,若设现在平均每小时生产面粉x kg,则根据题列出分式方程。
五预习疑惑:
3.轮船在顺水中航行80千米所需的时间和逆水航行60千米所需时间相同.已知水流的速度是3千米/时,设轮船在静水中的速度为x.列出方程得:
答案: 1.(1)(2)(4) 2.(1)x+20 (2) - =4
3.
数学学科八年级上册预习案设计
第 三章 第 七 节 第 2 课时 (总第 课时)
分式方程(2)
预习目标:会解可化为一元一次方程的分式方程(方程中的分式不超过两个),初步归纳出解分式方程的一般步骤,体会把分式方程化为整式方程求解的转化思想。
预习重点:会解可化为一元一次方程的分式方程
三、预习任务:
(一)预习准备:
1、在初一学过一元一次方程,二元一次方程组等等,这些方程我们统称为整式方程。 像方程,……这种方程特点是:__________________,这类方程叫做_____
2、整式方程的求解步骤:_________________________________________.
如解整式方程
解:1)去分母,得:
2)去括号,得:
3)移项,得:
4)合并同类项,得:
5)化系数为1,得:x=
(二)预习新知 解分式方程如何求解?
任务一:解分式方程(解题思路:将分式方程转化整式方程)
解:(1)去分母,得 (两边都乘以最简公分母 )
(2)解这整式方程,得:x= (问:这个解是原方程的解吗? )
任务二:解分式方程(解题思路:_____________________)
解:(1)去分母,得 (两边都乘以最简公分母 )
(2)解这整式方程,得:x= (问:这个解是原方程的解吗? )
(三)预习总结: 解分式方程的步骤有哪些?
四、 预习诊断.
1.对于分式方程,有以下说法:①最简公分母为(x-3)2;②转化为整式方程x=2+3,解得x=5;③原方程的解为x=3;④原方程无解,其中,正确说法的个数为 ( )
A.4 B.3 C.2 D.1
2. 方程的解是
3.方程的解是________。
4. .当x= 时,分式与的值相等。
五、预习疑惑:
第 三 章第 七 节 第 三 课时 (总第 课时) 分式方程一、预习目标: 1.掌握解分式方程的步骤。 2.知道解分式方程有时出现增根的原因。 3.了解解分式方程验根的必要性。二、预习重点:分式方程的去分母及根的检验三、预习任务(一)、预习准备 1、解分式方程的基本思路是将分式方程转化为_____方程,具体做法是在方程两边都乘以____.2.你能求出方程的解吗?3.请在下列各式等号右边的括号前填入“+”或“-”,使等式成立。 (1)2-a=___(a-2),(2)y-x=__(x-y),(3)b+a=__(a+b),(4)(b-a)2=___(a-b)2(二)、预习新知任务一:什么是分式方程的增根及产生增根的原因。预习课本78----79页,回答问题:1.我们把(       )的解称为原方程的增根。此时原分式方程( )解。2.这里的方程 与方程1-x=-1-2(x-2)的解一样(同解方程)吗?3.为什么会出现增根?4.因为解分式方程_________,所以解分式方程必须检验。任务二:试归纳解分式方程的一般步骤:(三)、预习总结四、预习诊断 相信你能行解下列方程: 1. 2. 3. 4.预习困惑:
第 三 章第 七 节 第 四 课时 (总第 课时) 分式方程预习目标:1.会根据题意正确的列出方程,熟练的解方程。2.能用分式方程的知识解决实际问题,并理解验根的必要性。 3.通过解方程,体会数学化归思想。二、预习重点:列分式方程解应用题。三、预习任务(一)预习准备 1、解下列方程(1) (2) 2.想一想,列方程解应用问题的步骤是什么? (二)预习新知任务一:阅读 课本80—81页并完成81页例6的填空。 任务二:尝试完成下列的题。 1. 现要装配30台机器,在装配好6台后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务。求原来每天装配的机器 2. 某人骑自行车比步行每小时多走8千米,已知他步行12千米所用时间和骑自行车走36千米所用时间相等,求这个人步行每小时走多少千米? 任务三:总结列分式方程解应用题的步骤:____________________________________________________________________(三)预习诊断 1.甲、乙两人同时从A地出发,骑自行车去B地,已知A、B两地的距离为30Km,甲每小时比乙多走3Km,并且比乙先到40分钟,设乙每小时走xKm,则可列方程为( )。 2. 供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度.3.自编一道可以用方程 来解得应用题。四、预习总结五、预习困惑:
数学学科八年级上册预习案设计
第三章 第8课时 (总第 课时)
《分式》回顾与总结
一、回顾目标:1掌握分式的基本性质,能熟练地进行分式的约分。
2、会解可化为一元一次方程的分式方程,并能解决有关的实际问题。
3、掌握比例的基本性质,会利用比和比例刻画事物间的数量关系。
二、回顾重点:分式的基本性质、分式方程、比例
三、回顾任务
(一)分式的定义、性质
1、分式的定义应强调什么,分式的基本性质。
2、如何进行分式的通分、约分?
3、分式的加、减、乘、除四则混合运算的法则及应注意的问题。
(二)分式方程与比例
1、比和比例的定义与性质
2、解分式方程的基本思路、步骤、方法?
四、回顾诊断
1、分式当x __________时分式的值为零。
2、当x __________时分式有意义。
3、① ②。
4、约分:①__________,②__________。
5、若分式的值为负数,则x的取值范围是__________。
6、计算:__________。
7、一项工程,甲单独做x小时完成,乙单独做y小时完成,则两人一起完成这项工程需要__________小时。
8、要使的值相等,则x=__________。
9、若关于x的分式方程无解,则m的值为__________。
10、若__________。