人教版八年级数学上册课时练
第十二章
全等三角形
12.3
角的平分线的性质
一、选择题
1.如图,∠1=∠2,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论错误的是(
)
A.PD=PE
B.OD=OE
C.∠DPO=∠EPO
D.PD=OP
2.如图在中,平分交于,于,若,则的周长是(
)
A.
B.
C.
D.
3.在△ABC中,
∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB于点E,AB=18cm,则△DBE的周长为(
)
A.16cm
B.8cm
C.18cm
D.10cm
4.已知:如图,∠GBC,∠BAC的平分线相交于点F,BE⊥CF于H,若∠AFB=40°,∠BCF的度数为( )
A.40°
B.50°
C.55°
D.60°
5.如图,△ABC的两条外角平分线AP、CP相交于点P,PH⊥AC于H;如果∠ABC=60?,则下列结论:①∠ABP=30?;②∠APC=60?;③PB=2PH;④∠APH=∠BPC;其中正确的结论个数是(
)
A.1
B.2
C.3
D.4
6.如图,BD是△ABC的角平分线,DE∥BC,DE交AB于E,若AB=BC,则下列结论中错误的是(
)
A.BD⊥AC
B.∠A=∠EDA
C.2AD=BC
D.BE=ED
7.如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN于点C,AD⊥MN于点D,下列结论错误的是( )
A.AD+BC=AB
B.与∠CBO互余的角有两个
C.∠AOB=90°
D.点O是CD的中点
8.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有(
)
A.4个
B.3个
C.2个
D.1个
9.如图所示,OP平分,,,垂足分别为A、B.下列结论中不一定成立的是(
).
A.
B.PO平分
C.
D.AB垂直平分OP
10.如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS.下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.其中,正确的有(
)
A.1个
B.2个
C.3个
D.4个
二、填空题
11.尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于长为半径画弧,两弧交于点P,作射线OP.
由作法得△OCP≌△ODP的根据是_________.
12.如图,在△ABC中,OB、OC分别是∠ABC和∠ACB的平分线,过点O作EF∥BC,分别与边AB、AC相交于点E、F,AB=8,AC=7,那么△AEF的周长等于_______.
13.如图,的周长为12,,的平分线相交于点O,于点D,且,则________.
14.如图,,是、的角平分线交点,是、外角平分线交点,则______,_____,联结,则______,点____(选填“在”、“不在”或“不一定在”)直线上.
15.在△ABC中,∠BAC=120°,AB=AC,∠ACB的平分线交AB于D,AE平分∠BAC交BC于E,连接DE,DF⊥BC于F,则∠EDC=_____°.
三、解答题
16.如图.已知在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR⊥AB于R,AB=7,BC=8,AC=9.
(1)求BP、CQ、AR的长.
(2)若BO的延长线交AC于E,CO的延长线交AB于F,若∠A=60゜,求证:OE=OF.
17.已知:如下图在△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若BC=32,且BD∶CD=9∶7,求:D到AB边的距离.
18.如图,△ABC的角平分线AD、BE相交于点P;
(1)在图①中,分别画出点P到△ABC的三边AC、BC、BA的垂线段PF、PG、PH,写出三条垂线段的数量关系,并说明理由;
(2)在图②中,∠ABC是直角,∠C=60?,其余条件不变,判断PE,PD之间的数量关系,并说明理由;
19.如图1,点C为线段AB上任意一点(不与点A、B重合),分别以AC、BC为一腰在AB的同侧作等腰△ACD和△BCE,CA=CD,CB=CE,∠ACD=∠BCE=30°,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接CP.
(1)线段AE与DB的数量关系为
;请直接写出∠APD=
;
(2)将△BCE绕点C旋转到如图2所示的位置,其他条件不变,探究线段AE与DB的数量关系,并说明理由;求出此时∠APD的度数;
(3)在(2)的条件下求证:∠APC=∠BPC.
20.已知:点、、不在同一条直线上,.
(1)如图1,当,时,求的度数;
(2)如图2,、分别为、的平分线所在直线,试探究与的数量关系;
(3)如图3,在(2)的前提下,有,,直接写出的值.
21.如图①,在中,,的平分线交于点,的邻补角的平分线交的延长线于点,连接交于点,求的度数.
22.已知AB∥CD,点E为平面内一点,BE⊥CE于E,
(1)如图1,请直接写出∠ABE和∠DCE之间的数量关系;
(2)如图2,过点E作EF⊥CD,垂足为F,求证:∠CEF=∠ABE;
(3)如图3,在(2)的条件下,作EG平分∠CEF交DF于点G,作ED平分∠BEF交CD于D,连接BD,若∠DBE+∠ABD=180°,且∠BDE=3∠GEF,求∠BEG的度数.
23.如图,∠AOB是直角,∠BOC=50°,OD平分∠AOC,若∠DOE=45°,那么OE平分∠BOC吗?请说明理由.
【参考答案】
1.D
2.A
3.C
4.B
5.B
6.C
7.B
8.A
9.D
10.D
11.SSS
12.15
13.12
14.116
64
26
在
15.30
16.解:连接AO,OB,OC,
∵OP⊥BC,OQ⊥AC,OR⊥AB,∠A、∠B的角平分线交于点O,
∴OR=OQ,OR=OP,
∴由勾股定理得:AR2=OA2﹣OR2,AQ2=AO2﹣OQ2,
∴AR=AQ,
同理BR=BP,CQ=CP,
即O在∠ACB角平分线上,
设BP=BR=x,CP=CQ=y,AQ=AR=z,AB=7,BC=8,AC=9,
则,
x=3,y=5,z=4,
∴BP=3,CQ=5,AR=4.
(2)过O作OM⊥AC于M,ON⊥AB于N,
∵O在∠A的平分线,
∴OM=ON,∠ANO=∠AMO=90°,
∵∠A=60°,
∴∠NOM=120°,
∵O在∠ACB、∠ABC的角平分线上,
∴∠EBC+∠FCB=(∠ABC+∠ACB)=×(180°﹣∠A)=60°,
∴∠FON=∠EOM,
在△FON和△EOM中,
∠ONF=∠OME,ON=OM,∠FON=∠EOM,
∴△FON≌△EOM,
∴OE=OF.
17.解:过点D作DE⊥AB,则DE是点D到AB的距离.
∵BD∶CD=9∶7,
∴CD=BC·=32×=14
而AD平分∠CAB,
∴DE=CD=14
18.(1)如图1所示:
PF=PH=PG,理由如下:
∵AD平分∠BAC,PF⊥AC,PH⊥AB,
∴PF=PH,
∵BE平分∠ABC,PG⊥BC,PH⊥AB,
∴PG=PH,
∴PF=PH=PG;
(2)PE=PD.
证明:∵∠ABC=90°,∠C=60°,
∴∠CAB=30°,
∵AD平分∠BAC,BE平分∠ABC,
∴∠CAD=∠BAD=∠CAB=15°,∠ABE=∠CBE=∠ABC=45°,
过点P作PF⊥AC,PG⊥BC,垂足分别为F、G,
则∠PFE=∠PGD=90°,
∵∠PDG为△ADC的一个外角,
∴∠PDG=∠C+∠CAD=60°+∠CAB=60°+15°=75°,
∵∠PEF是△ABE的一个外角,
∴∠PEF=∠CAB+∠ABE=30°+∠CBA=30°+45°=75°,
∴∠PEF=∠PDG,
∵PF⊥AC,PG⊥BC,
∴∠PFE=∠PGD=90°,
由(1)得:PF=PG,
∴△PFE≌△PGD,
∴PE=PD.
19.(1)解:如图1中,
∵∠ACD=∠BCE,
∴∠ACD+∠DCE=∠BCE+∠DCE,
∴∠ACE=∠DCB,
又∵CA=CD,CE=CB,
∴△ACE≌△DCB.
∴AE=BD,∴CAE=∠CDB,
∵∠AMC=∠DMP,
∴∠APD=∠ACD=30°,
故答案为AE=BD,30°
(2)如图2中,结论:AE=BD,∠APD=30°.
理由:∵∠ACD=∠BCE,
∴∠ACD+∠DCE=∠BCE+∠DCE,
∴∠ACE=∠DCB,
又∵CA=CD,CE=CB,
∴△ACE≌△DCB.
∴AE=BD,∴CAE=∠CDB,
∵∠AMP=∠DMC,
∴∠APD=∠ACD=30°.
(3)如图2﹣1中,分别过C作CH⊥AE,垂足为H,过点C作CG⊥BD,垂足为G,
∵△ACE≌△DCB.
∴AE=BD,
∵S△ACE=S△DCB
∴CH=CG,
∴∠DPC=∠EPC
∵∠APD=∠BPE,
∴∠APC=∠BPC.
20
(1)在图①中,过点C作CF∥AD,则CF∥BE.
∵CF∥AD∥BE,
∴∠ACF=∠A,∠BCF=180°﹣∠B,
∴∠ACB=∠ACF+∠BCF=180°﹣(∠B﹣∠A)=120°.
(2)在图2中,过点Q作QM∥AD,则QM∥BE.
∵QM∥AD,QM∥BE,
∴∠AQM=∠NAD,∠BQM=∠EBQ.
∵AQ平分∠CAD,BQ平分∠CBE,
∴∠NAD=∠CAD,∠EBQ=∠CBE,
∴∠AQB=∠BQM﹣∠AQM=(∠CBE﹣∠CAD).
∵∠C=180°﹣(∠CBE﹣∠CAD)=180°﹣2∠AQB,
∴2∠AQB+∠C=180°.
(3)∵AC∥QB,
∴∠AQB=∠CAP=∠CAD,∠ACP=∠PBQ=∠CBE,
∴∠ACB=180°﹣∠ACP=180°﹣∠CBE.
∵2∠AQB+∠ACB=180°,
∴∠CAD=∠CBE.
又∵QP⊥PB,
∴∠CAP+∠ACP=90°,即∠CAD+∠CBE=180°,
∴∠CAD=60°,∠CBE=120°,
∴∠ACB=180°﹣(∠CBE﹣∠CAD)=120°,
∴∠DAC:∠ACB:∠CBE=60°:120°:120°=1:2:2.
21.解:过点作于点,于点,于点.
,,
.
,
.
.
.
又过点作于点,于点,于点.
.
,
.
.
.
,
:
.
而,
.
22.解:(1)结论:∠DCE=90°+∠ABE.
理由:如图1中,从BE交DC的延长线于H.
∵AB∥CH,
∴∠ABE=∠H,
∵BE⊥CE,
∴∠CEH=90°,
∴∠DCE=∠H+∠CEH=90°+∠H,
∴∠DCE=90°+∠ABE.
(2)如图2中,作EM∥CD,
∵EM∥CD,CD∥AB,
∴AB∥CD∥EM,
∴∠BEM=∠ABE,∠F+∠FEM=180°,
∵EF⊥CD,
∴∠F=90°,
∴∠FEM=90°,
∴∠CEF与∠CEM互余,
∵BE⊥CE,
∴∠BEC=90°,
∴∠BEM与∠CEM互余,
∴∠CEF=∠BEM,
∴∠CEF=∠ABE.
(3)如图3中,设∠GEF=α,∠EDF=β.
∴∠BDE=3∠GEF=3α,
∵EG平分∠CEF,
∴∠CEF=2∠FEG=2α,
∴∠ABE=∠CEF=2α,
∵AB∥CD∥EM,
∴∠MED=∠EDF=β,∠KBD=∠BDF=3α+β,∠ABD+∠BDF=180°,
∴∠BED=∠BEM+∠MED=2α+β,
∵ED平分∠BEF,
∴∠BED=∠FED=2α+β,
∴∠DEC=β,
∵∠BEC=90°,
∴2α+2β=90°,
∵∠DBE+∠ABD=180°,∠ABD+∠BDF=180°,
∴∠DBE=∠BDF=∠BDE+∠EDF=3α+β,
∵∠ABK=180°,
∴∠ABE+∠B=DBE+∠KBD=180°,
即2α+(3α+β)+(3α+β)=180°,
∴6α+(2α+2β)=180°,
∴α=15°,
∴∠BEG=∠BEC+∠CEG=90°+15°=105°.
23.OE平分∠BOC,理由如下:
因为∠AOB是直角,∠BOC=50°,所以∠AOC=∠AOB+∠BOC=140°.
因为OD平分∠AOC,所以∠DOC=∠AOC=70°.
因为∠DOE=45°,所以∠EOC=70°-45°=25°.
因为∠BOC=50°,所以∠BOE=50°-25°=25°=∠EOC,所以OE平分∠BOC.