八年级 上册
11.2.2 三角形的外角
一.基本训练,激趣导入
复习引入
1.在△ABC中,∠A=80°, ∠B=52°,则∠C= .
3.若延长BC至D,则∠ACD是什么角?这个角与△ABC的三个内角有什么关系?
48 °
2.如图,在△ABC中, ∠A=70°, ∠B=60°,
则∠ACB= ,∠ACD= .
A
B
C
D
50 °
130°
情境引入
二.出示目标,指导自学
1.理解并掌握三角形的外角的概念.
2.能够在能够复杂图形中找出外角.(难点)
3.掌握三角形的一个外角等于与它不相邻的两个内角
的和及三角形的内角和.(重点)
4.会利用三角形的外角性质解决问题.
三.合作学习,引导发现
三角形的外角的概念
一
定义
如图,把△ABC的一边BC延长,得到∠ACD,像这样,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.
∠ACD是△ABC的一个外角
C
B
A
D
问题1 如图,延长AC到E,∠BCE是不是△ABC的一个外角?∠DCE是不是△ABC的一个外角?
E
在三角形每个顶点处都有两个外角.
∠ACD 与∠BCE为对顶角,∠ACD =∠BCE;
C
B
A
D
∠BCE是△ABC的一个外角,∠DCE不是△ABC的一个外角.
问题2 如图,∠ACD与∠BCE有什么关系?在三角形的每个顶点处有多少个外角?
A
B
C
画一画 画出△ABC的所有外角,共有几个呢?
每一个三角形都有6个外角.
每一个顶点相对应的外角都有2个,且这2个角为对顶角.
三角形的外角应具备的条件:
①角的顶点是三角形的顶点;
②角的一边是三角形的一边;
③另一边是三角形中一边的延长线.
∠ACD是△ABC的一个外角
C
B
A
D
每一个三角形都有6个外角.
总结归纳
F
A
B
C
D
E
如图,∠ BEC是哪个三角形的外角?∠AEC是哪个三角形的外角?∠EFD是哪个三角形的外角?
∠BEC是△AEC的外角;
∠AEC是△BEC的外角;
∠EFD是△BEF和△DCF的外角.
练一练
三角形的外角
A
C
B
D
相邻的内角
不相邻的内角
三角形的外角的性质
二
问题1 如图,△ABC的外角∠BCD与其相邻的内角
∠ACB有什么关系?
∠BCD与∠ACB互补.
问题2 如图,△ABC的外角∠BCD与其不相邻的两内角(∠A,∠B)有什么关系?
三角形的外角
A
C
B
D
相邻的内角
不相邻的内角
∵∠A+∠B+∠ACB=180°,∠BCD+∠ACB=180°,
∴∠A+∠B=∠BCD.
你能用作平行线的方法证明此结论吗?
D
证明:过C作CE平行于AB,
A
B
C
1
2
∴∠1= ∠B,
(两直线平行,同位角相等)
∠2= ∠A ,
(两直线平行,内错角相等)
∴∠ACD= ∠1+ ∠2= ∠A+ ∠B.
E
已知:如图,△ABC,求证:∠ACD=∠A+∠B.
验证结论
三角形内角和定理的推论
A
B
C
D
(
(
(
三角形的外角等于与它不相邻的两个内角的和.
应用格式:
∵ ∠ACD是△ABC的一个外角
∴ ∠ACD= ∠A+ ∠B.
知识要点
练一练:说出下列图形中∠1和∠2的度数:
A
B
C
D
(
(
(
80 °
60 °
(
2
1
(1)
A
B
C
(
(
(
(
2
1
50 °
32 °
(2)
∠1=40 °, ∠2=140 °
∠1=18 °, ∠2=130 °
三角形的外角和
三
例3 如图, ∠BAE, ∠CBF, ∠ACD是△ABC的三个外角,它们的和是多少?
解:由三角形的一个外角等于与它不相邻的两个内角的和,得
∠BAE= ∠2+ ∠3,
∠CBF= ∠1+ ∠3,
∠ACD= ∠1+ ∠2.
又知∠1+ ∠2+ ∠3=180 °,
所以∠BAE+ ∠CBF+ ∠ACD
=2(∠1+ ∠2+ ∠3)=360 °.
A
B
C
E
F
D
(
(
(
(
(
(
2
1
3
你还有其他解法吗?
解法二:如图,∠BAE+∠1=180 ° ① ,
∠CBF +∠2=180 ° ②,
∠ACD +∠3=180 ° ③,
又知∠1+ ∠2+ ∠3=180 °,
①+ ②+ ③得
∠BAE+ ∠CBF+ ∠ACD
+(∠1+ ∠2+ ∠3)=540 °,
所以∠BAE+ ∠CBF+ ∠ACD=540 °-180°=360°.
A
B
C
E
F
D
(
(
(
(
(
(
2
1
3
解法三:过A作AM平行于BC,
∠3= ∠4
B
C
1
2
3
4
A
∠2= ∠BAM,
所以 ∠1+ ∠2+ ∠3= ∠1+ ∠4+ ∠BAM=360°
M
∠2+ ∠ 3= ∠ 4+∠BAM,
结论:三角形的外角和等于360°.
思考 你能总结出三角形的外角和的数量关系吗?
D
E
F
例1 如图,∠A=42°,∠ABD=28°,∠ACE=18°,
求∠BFC的度数.
∵ ∠BEC是△AEC的一个外角,
∴ ∠BEC= ∠A+ ∠ACE,
∵∠A=42° ,∠ACE=18°,
∴ ∠BEC=60°.
∵ ∠BFC是△BEF的一个外角,
∴ ∠BFC= ∠ABD+ ∠BEF,
∵ ∠ABD=28° ,∠BEC=60°,
∴ ∠BFC=88°.
解:
F
A
C
D
E
B
四.变式训练,反馈调节
五.分层测试,效果回馈
1.判断下列命题的对错.
(1)三角形的外角和是指三角形的所有外角的和. ( )
(2)三角形的外角和等于它的内角和的2倍. ( )
(3)三角形的一个外角等于两个内角的和. ( )
(4)三角形的一个外角等于与它不相邻的两个内角的和.( )
(5)三角形的一个外角大于任何一个内角. ( )
(6)三角形的一个内角小于任何一个与它不相邻的外角.( )
2.如图,AB//CD,∠A=37°, ∠C=63°,那么∠F
等于 ( )
F
A
B
E
C
D
A.26°
B.63°
C.37°
D.60°
A
3.(1)如图,∠BDC是________
的外角,也是 的外角;
(2)若∠B=45 °, ∠BAE=36 °,
∠BCE=20 °,试求∠AEC的度数.
A
B
C
D
E
△ADE
△ADC
解:根据三角形外角的性质有
∠ADC= ∠B+ ∠BCE,
∠AEC= ∠ADC+ ∠BAE.
所以∠AEC= ∠B+∠BCE+ ∠BAE
=45 °+20 °+36 °=101 °.
六、课堂小结
三角形的外角
定义
角一边必须是三角形的一边,另一边必须是三角形另一边的延长线
性质
三角形的一个外角等于与它不相邻的两个内角的和
三角形的外角和
三角形的外角和等于360 °