专题训练六
幂、整式的乘除法
下列计算正确的是(
)
A.a2·a3=a6
B.a7÷a3=a4
C.(a3)5=a8
D.(ab)2=ab2
计算a·a5-(2a3)2的结果为(
)
A.a6-2a5
B.-a6
C.a6-4a5
D.-3a6
已知xm=2,xn=3,则xm+n的值是(
)
A.5
B.6
C.8
D.9
若xa=2,xb=3,则x3a-2b等于(
)
A.-1
B.1
C.6
D.
计算下列各题:
(1)y3·y2·y=
;
(2)(-b)2·(-b)3·(-b)5=
;
(3)(x3)4÷x2=
;
(4)(a3)2÷(a2)3=
;
(5)(-ab)5÷(-ab)3=
;
(6)(a-b)3·(b-a)2=
.
简便计算:
(1)
12×
11×(-2)3=
;
(2)82
021×(-0.125)2
020+(-0.25)3×26=
.
(1)若am=6,an=2,则a2m-n=
;
(2)若2×4m×8m=216,则m=
;
(3)若5n=2,4n=3,则20n的值为
;
(4)若9x=4,3y=-2,则34x-3y的值是
.
计算:
(1)(a2)3·(a3)5;
(2)(-3a3)2·a3+(-4a)2·a7-(5a3)3;
(3)[(a2)5·(-a2)3]÷(-a4)4;
(4)(a-b)3÷(b-a)2+(-a-b)5÷(a+b)4.
已知x2m=2,求(2x3m)2-(3xm)2的值.
计算:
(1)9xy·
=
;
(2)(-6ab)2·3a2b=
;
(3)6ab
=
;
(4)
·
=
;
(5)(x-3)(x2+x-1)=
;
(6)(x+7)(x-6)-(x-2)(x+1)=
.
计算:
(1)6x3yz÷2xy=
;
(2)(3x2y-6xy)÷6xy=
;
(3)(a2b3-a3b2)÷(ab)2=
;
(4)(9a4x5-6a3x4-3a3x3)÷
=
;
(5)(8x2y3z+4x3y2z)÷
2=
.
计算:
(1)(7x2y3-8x3y2z)÷8x2y2;
(2)(2x2y)3·5xy2÷(-10x2y4);
(3)[x(x2y2-xy)-y(x2+x3y)]÷3x2y;
(4)3x(x2+4x+4)-(x-3)(3x+4).
先化简,再求值:
(1)[(a+2b)2+(a-2b)(a+2b)]÷2a,其中a=2
014,b=-2
013;
(2)(x+2)2+(2x+1)(2x-1)-4x(x+1),其中x=-;
已知
+(b+1)2=0,求代数式(a2b-2ab2-b3)÷b-(a+b)(a-b)的值.
答案:
B
D
B
D
(1) y6
(2)b10
(3)x10
(4)1
(5)a2b2
(6)(a-b)5
6.
(1) -25
(2)7
7.
(1)18
(2)3
(3)6
(4)-2
8.
(1)解:原式=a6·a15=a21;
(2)解:原式=9a6·a3+16a2·a7-125a9
=9a9+16a9-125a9
=-100a9;
(3)解:原式=[a10·(-a6)]÷a16
=(-a16)÷a16
=-1;
(4)解:原式=(a-b)3÷(a-b)2-(a+b)5÷(a+b)4
=(a-b)-(a+b)
=-2b.
解:原式=4x6m-9x2m
=4(x2m)3-9x2m
=4×23-9×2
=14.
(1) -3x3y2
(2)108a4b3
(3)12a3b2-2a2b3
(4)-2a4b2-a3b3+a2b4
(5)x3-2x2-4x+3
(6)2x-40
(1)3x2z
(2)0.5x-1
(3)b-a
(4)-27ax2+18x+9
(5)32yz+16xz
(1)解:原式=7x2y3÷8x2y2-8x3y2z÷8x2y2
=y-xz;
(2)解:原式=8x6y3·5xy2÷(-10x2y4)
=40x7y5÷(-10x2y4)
=-4x5y;
(3)解:原式=(x3y2-x2y-x2y-x3y2)÷3x2y
=-2x2y÷3x2y
=-;
(4)解:原式=3x3+12x2+12x-(3x2+4x-9x-12)
=3x3+12x2+12x-3x2-4x+9x+12
=3x3+9x2+17x+12.
(1)解:[(a+2b)2+(a-2b)(a+2b)]÷2a
=(a2+4ab+4b2+a2-4b2)÷2a
=(2a2+4ab)÷2a
=a+2b.
当a=2
014,b=-2
013时,原式=2
014-2×2
013=-2
012;
(2)解:原式=(x2+4x+4)+(4x2-1)-(4x2+4x)
=x2+4x+4+4x2-1-4x2-4x
=x2+3.
当x=-时,原式=(-)2+3=5.
解:原式=a2-2ab-b2-(a2-b2)
=a2-2ab-b2-a2+b2
=-2ab.
∵
+(b+1)2=0,
∴
=0,(b+1)2=0,
∴a=,b=-1,
∴原式=-2××(-1)=1.