25.5直线与圆的位置关系
一、教学目标:
1、使学生掌握直线与圆的位置关系,能用数量来判断直线与圆的位置关系。
2、进一步体会分类讨论思想。
二、教学重难点:
教学重点:用数量关系(圆心到直线的距离)判断直线与圆的位置关系
教学难点:用数量关系(圆心到直线的距离)判断直线与圆的位置关系
三、教学过程
(一)情境导入:用移动的观点认识直线与圆的位置关系
1、同学们也许看过海上日出,如右图中,如果我们把太阳看作一个圆,那么太阳在升起的过程中,它和海平面就有右图中的三种位置关系。
2、请同学在纸上画一条直线,把硬币的边缘看作圆,在纸上移动硬币,你能发现直线与圆的公共点个数的变化情况吗?公共点个数最少时有几个?最多时有几个?
(二)实验与探究1:
数量关系判断直线与圆的位置关系 从以上的两个例子,可以看到,直线与圆的位置关系只有以下三种,如下图所示:如果一条直线与一个圆没有公共点,那么就说这条直线与这个圆相离,如图28.2.6(1)所示. 如果一条直线与一个圆只有一个公共点,那么就说这条直线与这个圆相切,如图28.2.6(2)所示.此时这条直线叫做圆的切线,这个公共点叫做切点.如果一条直线与一个圆有两个公共点,那么就说这条直线与这个圆相交,如图28.2.6(3)所示.此时这条直线叫做圆的割线.
如何用数量来体现圆与直线的位置关系呢?
如上图,设⊙O的半径为r,圆心O到直线l的如何用数量来体现圆与直线的位置关系呢?
如上图,设⊙O的半径为r,圆心O到直线l的距离为d,从图中可以看出:
若 直线l与⊙O相离;
若 直线l与⊙O相切;
若 直线l与⊙O相交;
所以,若要判断圆与直线的位置关系,必须对圆心到直线的距离与圆的半径进行比较大小,由比较的结果得出结论。
四、例题讲解:
例1:
1)已知圆的半径等于5厘米,圆心到直线l的距离是:
(1)4厘米;(2)5厘米;(3)6厘米.
直线l和圆分别有几个公共点?分别说出直线l与圆的位置关系。
2)已知圆的半径等于10厘米,直线和圆只有一个公共点,求圆心到直线的距离.
3)如果⊙O的直径为10厘米,圆心O到直线AB的距离为10厘米,那么⊙O 与直线A B有怎样的位置关系?
例2、RtΔABC中,∠C=900,AC=3,BC=4,CM⊥AB于M,以C为圆心,CM为半径作⊙C,则点A、B、C、AB的中点E与⊙C的位置关系分别是 、 、 、 。
解略
五、课后小结
本节课我们学习了直线与圆的位置关系,当我们判断直线与圆的位置关系时,应该用数量关系(圆心到直线的距离)来体现,即上面讲解的圆心到直线的距离与圆的半径进行比较大小,从而断定是哪种关系。
若 直线l与⊙O相离;
若 直线l与⊙O相切;
若 直线l与⊙O相交;
六、课后作业:习题1、2、3、4
七、课后反思: