第3章 概率的进一步认识
一.选择题
1.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同,从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是( )
A. B. C. D.
2.下列说法正确的是( )
A.事件“在一张纸上随意画两个直角三角形,这两个直角三角形相似”是确定事件
B.如果一组数据为4、a、5、3、8,其平均数为a,那么这组数据的方差为
C.事件“若△ABC的面积是12,则它的一边长a与这边上的高h的函数关系式为”是随机事件
D.从一个装有2个红球和1个黑球的袋子中任取一球,取到的是黑球符合如图所示的“用频率估计概率”的实验得出的频率折线图(如图)
3.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,则口袋中白色球的个数可能是( )
A.28 B.24 C.16 D.6
4.如图A是某公园的进口,B,C,D是三个不同的出口,小明从A处进入公园,那么从B,C,D三个出口中恰好在C出口出来的概率为( )
A. B. C. D.
5.如图,有一电路连着三个开关,每个开关闭合与断开是等可能的,若不考虑元件的故障因素,则电灯点亮的概率为( )
A. B. C. D.
6.一个不透明的袋子里装有两双只有颜色不同的手套,小明已经摸出一只手套,他再任意摸取一只,恰好两只手套凑成同一双的概率为( )
A. B. C. D.1
7.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是( )
A. B. C. D.
8.2019年9月8日第十一届全国少数民族传统体育运动会在郑州奥体中心隆重开幕,某单位得到了两张开幕式的门票,为了弘扬劳动精神,决定从本单位的劳动模范小李、小张、小杨、小王四人中选取两人去参加开幕式,那么同时选中小李和小张的概率为( )
A. B. C. D.
9.九年级参展作品中有4件获得一等奖,其中有2名作者是男生,2名作者是女生.现在要在抽两人去参加学校总结表彰座谈会,求恰好抽中一男一女的概率( )
A. B. C. D.
10.某水果超市为了吸引顾客来店购物,设立了一个如图所示的可以自由转动的转盘,开展有奖购物活动.顾客购买商品满200元就能获得一次转动转盘的机会,当转盘停止时,指针落在“一袋苹果”的区域就可以获得“一袋苹果”的奖品;指针落在“一盒樱桃”的区域就可以获得“一盒樱桃”的奖品.下表是该活动的一组统计数据:
转动转盘的次数n 100 150 200 500 800 1000
落在“一袋苹果”区域的次数m 68 108 140 355 560 690
落在“一袋苹果”区域的频率 0.68 0.72 0.70 0.71 0.70 0.69
下列说法不正确的是( )
A.当n很大时,估计指针落在“一袋苹果”区域的频率大约是0.70
B.假如你去转动转盘一次,获得“一袋苹果”的概率大约是0.70
C.如果转动转盘2 000次,指针落在“一盒樱桃”区域的次数大约有600次
D.转动转盘10次,一定有3次获得“一盒樱桃”
二.填空题
11.有4张看上去无差别的卡片,正面分别写着1,2,4,5,洗匀随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是 .
12.技术变革带来产品质量的提升.某企业技术变革后,抽检某一产品2020件,欣喜发现产品合格的频率已达到0.9911,依此我们可以估计该产品合格的概率为 .(结果要求保留两位小数)
13.一个不透明的盒子里有2个黄色小球和a个白色小球.每个小球除颜色外均相同,从中随机选取一个小球,记录颜色后放回并混合均匀.通过大量重复实验后发现,取出黄色小球的频率约是20%,那么可以推算出a的值大约是 .
14.在一个不透明的袋中装有黑色和红色两种颜色的球共计15个,每个球除颜色外都相同,每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到黑球的频率稳定于0.6,则可估计这个袋中红球的个数约为 .
15.某养鱼专业户为了估计鱼塘中鱼的总条数,他先从鱼塘中捞出100条,将每条鱼作了记号后放回水中,当它们完全混合于鱼群后,再从鱼塘中捞出100条鱼,发现其中带记号的鱼有10条,估计该鱼塘里约有 条鱼.
三.解答题
16.将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.
(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为 .
(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).
17.在甲口袋中有三个球分别标有数码1,﹣2,3;在乙口袋中也有三个球分别标有数码4,﹣5,6;已知口袋均不透明,六个球除标码不同外其他均相同,小明从甲口袋中任取一个球,并记下数码,小林从乙口袋中任取一个球,并记下数码.
(1)用树状图或列表法表示所有可能的结果;
(2)求所抽取的两个球数码的乘积为负数的概率.
18.净月某校在抗疫期间组织志愿小组到附近敬老院为老人服务,准备从初三(1)班中的3名男生小亮、小明、小伟和2名女生小红、小丽中选取一名男生和一名女生.请用画树状图(或列表)的方法,求出恰好选中男生小明和女生小红的概率.
19.一只不透明的袋子中装有4个球,其中两个红球,一个黄球、一个白球,这些球除颜色外都相同.
(1)搅匀后从中任意摸出1个球,恰好是红球的概率为 .
(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,用列表法或树形图的方法,求两次都是红球的概率.
20.为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.
(1)填空:样本容量为 ,a= ;
(2)把频数分布直方图补充完整;
(3)若从该地随机抽取1名学生,估计这名学生身高低于160cm的概率.
参考答案
一.选择题
1. B.
2. D.
3. C.
4. B.
5. B.
6.B.
7. C.
8. D.
9. D.
10. D.
二.填空题
11. .
12. 0.99.
13. 8.
14. 6.
15. 1000.
三.解答题
16.解:(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为,
故答案为:;
(2)画树状图如下:
由树状图知,共有16种等可能结果,其中至少有1张印有“兰”字的有7种结果,
∴至少有1张印有“兰”字的概率为.
17.解:(1)列表如下:
1 ﹣2 3
4 (1,4) (﹣2,4) (3,4)
﹣5 (1,﹣5) (﹣2,﹣5) (3,﹣5)
6 (1,6) (﹣2,6) (3,6)
(2)由表可知,共有9种等可能结果,其中所抽取的两个球数码的乘积为负数的由4种结果,
∴所抽取的两个球数码的乘积为负数的概率为.
18.解:列表得:
小亮 小明 小伟
小丽 小丽,小亮 小丽,小明 小丽,小伟
小红 小红,小亮 小红,小明 小红,小伟
∵共有6种等可能的情况,而正好是男生小明和女生小红的有1种情况,
∴正好抽到男生小明和女生小红的概率=.
19.解:(1)搅匀后从中任意摸出1个球,恰好是红球的概率为=,
故答案为:.
(2)画树状图为:
共有16种等可能的结果数,其中两次都是红球的有4种结果,
所以两次都是红球的概率为.
20.解:(1)15÷=100,
所以样本容量为100;
B组的人数为100﹣15﹣35﹣15﹣5=30,
所以a%=×100%=30%,则a=30;
故答案为100,30;
(2)补全频数分布直方图为:
(3)样本中身高低于160cm的人数为15+30=45,
样本中身高低于160cm的频率为=0.45,
所以估计从该地随机抽取1名学生,估计这名学生身高低于160cm的概率为0.45.