首页
高中语文
高中数学
高中英语
高中物理
高中化学
高中历史
高中道德与法治(政治)
高中地理
高中生物
高中音乐
高中美术
高中体育
高中信息技术
高中通用技术
资源详情
高中数学
人教A版(2019)
必修 第一册
第三章 函数概念与性质
3.3 幂函数
人教A版(2019)高中数学课时练必修第一册第三章幂函数同步练习卷(Word含答案)
文档属性
名称
人教A版(2019)高中数学课时练必修第一册第三章幂函数同步练习卷(Word含答案)
格式
docx
文件大小
199.7KB
资源类型
教案
版本资源
人教A版(2019)
科目
数学
更新时间
2020-10-06 15:01:43
点击下载
图片预览
1
2
文档简介
人教A版(2019)高中数学课时练
必修第一册
第三章函数概念与性质
3.3冥函数
一、选择题(60分)
1.若幂函数y=(m2-3m+3)xm-2的图像不过原点,则m的取值范围为( )
A.1≤m≤2
B.m=1或m=2
C.m=2
D.m=1
2.已知,,,则
A.
B.
C.
D.
3.设a=,b=,c=,则( )
A.a
B.c
C.b
D.b
4.定义在上的奇函数在上单调递减,若,则满足的的取值范围是(
).
A.
B.
C.
D.
5.下列函数中,既是偶函数,又是在区间上单调递减的函数为(
)
A.
B.
C.
D.
6.幂函数f(x)=x3m-5(m∈N)在(0,+∞)上是减函数,且f(-x)=f(x),则m可能等于( )
A.0
B.1
C.2
D.3
7.有四个幂函数:①;②;③;④.某同学研究了其中的一个函数,他给出这个函数的三个性质:(1)偶函数;(2)值域是,且;(3)在上是增函数.如果他给出的三个性质中,有两个正确,一个错误,则他研究的函数是(
)
A.①
B.②
C.③
D.④
8.下列关于幂函数的结论,正确的是(
).
A.幂函数的图象都过点
B.幂函数的图象不经过第四象限
C.幂函数为奇函数或偶函数
D.幂函数在其定义域内都有反函数
9.已知函数是定义在上的奇函数,当时,,若,都有,则实数的取值范围为
(
)
A.
B.
C.
D.
10.已知,若,则=(
)
A.
B.2
C.4
D.1
11.已知实数a,b满足等式,则下列五个关系式中可能成立的是(
)
A.
B.
C.a<b<1
D.
12.已知幂函数(m,,m,n互质),下列关于的结论正确的是(
)
A.m,n是奇数时,幂函数是奇函数
B.m是偶数,n是奇数时,幂函数是偶函数
C.m是奇数,n是偶数时,幂函数是奇函数
D.时,幂函数在上是减函数
二、填空题(20分)
13.若点,均在幂函数的图象上,则实数_____.
14.给出封闭函数的定义:若对于定义域内的任意一个自变量,都有函数值,则称函数在上封闭.若定义域,则函数①;②;③;④,其中在上封闭的是________(填序号).
15.若幂函数y=xα的图像经过点(8,4),则函数y=xα的值域是________.
16.已知.若函数在上递减且为偶函数,则________.
17.已知幂函数的图像不过原点,则实数m的值为__________.
三、解答题(70分)
18.已知幂函数在上是增函数,且在定义域上是偶函数.
(1)求p的值,并写出相应的函数的解析式.
(2)对于(1)中求得的函数,设函数,问是否存在实数,使得在区间上是减函数,且在区间上是增函数?若存在,请求出q;若不存在,请说明理由.
19.若,求实数a的取值范围.
20.已知幂函数(其中,且p,q互素)试研究当n,p,q分别取奇数和偶数时的图像特征.
21.已知幂函数在上单调递增,函数;
(1)求的值;
(2)当时,记、的值域分别是、,若,求实数的取值范围;
22.已知幂函数f(x)=x(m∈N
)的图象关于y轴对称,且在(0,+∞)上是减函数,求满足(a+1)<(3-2a)的a的取值范围.
23.已知二次函数(、为常数且),满足条件,且方程有等根.
(1)求的解析式;
(2)是否存在实数,使当定义域为时,值域为?如果存在,求出、的值;如果不存在,请说明理由.
【参考答案】
1.D
2.A
3.D
4.D
5.A
6.B
7.B
8.B
9.B
10.C
11.A
12.A
13.9
14.②③④.
15.[0,+∞)
16.
17.3
18.(1)当或时,;当时,;(2)存在,.
19.
20.当n为奇数时函数在第一象限的图像单调递减,当n为偶数时函数在第一象限的图像单调递增;p奇q奇:奇函数;p奇q偶:偶函数:p偶q奇:非奇非偶函数
21.(1)
0
;
(2)
22..
23.(1);(2)
点击下载
同课章节目录
第一章 集合与常用逻辑用语
1.1 集合的概念
1.2 集合间的基本关系
1.3 集合的基本运算
1.4 充分条件与必要条件
1.5 全称量词与存在量词
第二章 一元二次函数、方程和不等式
2.1 等式性质与不等式性质
2.2 基本不等式
2.3 二次函数与一元二次方程、不等式
第三章 函数概念与性质
3.1 函数的概念及其表示
3.2 函数的基本性质
3.3 幂函数
3.4 函数的应用(一)
第四章 指数函数与对数函数
4.1 指数
4.2 指数函数
4.3 对数
4.4 对数函数
4.5 函数的应用(二)
第五章 三角函数
5.1 任意角和弧度制
5.2 三角函数的概念
5.3 诱导公式
5.4 三角函数的图象与性质
5.5 三角恒等变换
5.6 函数 y=Asin( ωx + φ)
5.7 三角函数的应用
点击下载
VIP下载