2020年秋人教版九年级数学上册随堂练——23.1图形的旋转学情练习(Word版 含答案)

文档属性

名称 2020年秋人教版九年级数学上册随堂练——23.1图形的旋转学情练习(Word版 含答案)
格式 zip
文件大小 438.6KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2020-10-06 14:09:52

图片预览

文档简介

23.1图形的旋转学情练习
一、选择题
1.将图中所示的图案以圆心为中心,旋转180°后得到的图案是(  )
A.
B.
C.
D.
2.
如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为(  )
A.3+2
B.4+3
C.2+2
D.10
3.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为(

A.
B.6
C.
D.
4.如图,将直角三角形ABC绕斜边AB所在的直线旋转一周得到的几何体是(
)
A.
B.
C.
D.
5.
如图,将绕点逆时针旋转70°到的位置,若,则(  )
A.45°
B.40°
C.35°
D.30°
6.如图,在△ABC中,,将△ABC在平面内绕点A旋转到△AB’C’的位置,使,则旋转角的度数为(

A.
B.
C.
D.
7.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是(  )
A.点A
B.点B
C.点C
D.点D
8.
如图,在中,,,,将绕点顺时针旋转度得到,当点的对应点恰好落在边上时,则的长为(  )
A.1.6
B.1.8
C.2
D.2.6
9.点P是正方形ABCD边AB上一点(不与A,B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于(
)
A.75°
B.60°
C.45°
D.30°
10.如图,将矩形
ABCD
绕点
A
顺时针旋转到矩形
AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是(
)
A.68°
B.20°
C.28°
D.22°
二、填空题
11.如图,是正三角形内的一点,且,,.若将绕点逆时针旋转60°后,得到,则________.
12.
如图,在平面直角坐标系中,的直角顶点的坐标为?,点在轴正半轴上,且.将先绕点逆时针旋转,再向左平移3个单位,则变换后点的对应点的坐标为______.
13.已知矩形ABCD,AB=6,AD=8,将矩形ABCD绕点A顺时针旋转θ(0°<θ<360°)得到矩形AEFG,当θ=_____°时,GC=GB.
14.
如图,等边三角形ABC内有一点P,分別连结AP、BP、CP,若,,.则S△ABP+S△BPC=_______.
15.如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,2).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为_____.
16.如图,在直角坐标系中,已知点,,对连续作旋转变换,依次得到,,,,…,则的直角顶点的坐标为______.
17.如图,在Rt△ABC中,∠C=90°,AC=BC,将其绕点A逆时针旋转15°得到Rt△AB′C′,B′C′交AB于E,若图中阴影部分面积为,则B′E的长为__.
18.已知:如图,在△AOB中,∠AOB=90°,AO=3
cm,BO=4
cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=__________cm.
三、解答题
19.如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,求EF的长.
20.
如图,直线与轴交于点,与轴交于点,将线段绕点顺时针旋转90°得到线段,反比例函数的图象经过点.
(1)求直线和反比例函数的解析式;
(2)已知点是反比例函数图象上的一个动点,求点到直线距离最短时的坐标.
21.如图,在△ABC中,,,D是AB边上一点,点D与A,B不重合,连结CD,将线段CD绕点C按逆时针方向旋转得到线段CE,连结DE交BC于点F,连接BE.
求证:△ACD≌△BCE;
当时,求的度数.
22.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,
(1)当直线MN绕点C旋转到图(1)的位置时,显然有:DE=AD+BE;
(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD﹣BE;
(3)当直线MN绕点C旋转到图(3)的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系.
23.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想:
图1中,线段PM与PN的数量关系是 
 ,位置关系是 
 ;
(2)探究证明:
把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸:
把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
24.已知正方形ABCD中,,绕点A顺时针旋转,它的两边分别交CB、或它们的延长线于点M、N,当绕点A旋转到时如图,则
线段BM、DN和MN之间的数量关系是______;
当绕点A旋转到时(如图,线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;
当绕点A旋转到(如图的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.
答案
1.
C
2.
B
3.
A
4.
D
5.
D
6.
C
7.
B
8.
A
9.
C
10.
D
11.
150°
12.
13.
60或300
14.
15.
(-2,6)
16.
17.
﹣2
18.
1.5
19.
解:∵△DAE逆时针旋转90°得到△DCM,
∴∠FCM=∠FCD+∠DCM=180°,
∴F,C,M三点共线,
∴DE=DM,∠EDM=90°,
∴∠EDF+∠FDM=90°,
∵∠EDF=45°,
∴∠FDM=∠EDF=45°,
在△DEF和△DMF中,
∴△DEF≌△DMF(SAS),
∴EF=MF,设EF=MF=x,
∵AE=CM=1,且BC=3,
∴EB=AB-AE=3-1=2,BM=BC+CM=3+1=4,
∴BF=BM-MF=4-x,
在Rt△EBF中,由勾股定理得:EB2+BF2=EF2,即22+(4-x)2=x2,
解得x=,即EF=.
20.
解:(1)将点,点,代入,
∴,
∴;
∵过点作轴,
∵线段绕点顺时针旋转90°得到线段,
∴≌(),
∴,,
∴,
∴,
∴;
(2)设与平行的直线,
联立,
∴,
当时,,此时点到直线距离最短;
∴;
21.
由题意可知:,,




在△ACD和△BCE中,

∴△ACD≌△BCE;
,,

由可知:,


.
22.
(1)∵AD⊥MN,BE⊥MN,
∴∠ADC=∠CEB=90°,
∴∠DAC+∠ACD=90°,
∵∠ACB=90°,
∴∠BCE+∠ACD=90°,
∴∠DAC=∠BCE,
在△ADC和△CEB,

∴△ADC≌△CEB(AAS),
∴CD=BE,AD=CE,
∴DE=CE+CD=AD+BE;
(2)与(1)一样可证明△ADC≌△CEB,
∴CD=BE,AD=CE,
∴DE=CE﹣CD=AD﹣BE;
(3)DE=BE﹣AD.
23.
(1)∵点P,N是BC,CD的中点,
∴PN∥BD,PN=BD,
∵点P,M是CD,DE的中点,
∴PM∥CE,PM=CE,
∵AB=AC,AD=AE,
∴BD=CE,
∴PM=PN,
∵PN∥BD,
∴∠DPN=∠ADC,
∵PM∥CE,
∴∠DPM=∠DCA,
∵∠BAC=90°,
∴∠ADC+∠ACD=90°,
∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,
∴PM⊥PN,
故答案为:PM=PN,PM⊥PN,
(2)由旋转知,∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△ABD≌△ACE(SAS),
∴∠ABD=∠ACE,BD=CE,
同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,
∴PM=PN,
∴△PMN是等腰三角形,
同(1)的方法得,PM∥CE,
∴∠DPM=∠DCE,
同(1)的方法得,PN∥BD,
∴∠PNC=∠DBC,
∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,
∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC
=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC
=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,
∵∠BAC=90°,
∴∠ACB+∠ABC=90°,
∴∠MPN=90°,
∴△PMN是等腰直角三角形,
(3)如图2,同(2)的方法得,△PMN是等腰直角三角形,
∴MN最大时,△PMN的面积最大,
∴DE∥BC且DE在顶点A上面,
∴MN最大=AM+AN,
连接AM,AN,
在△ADE中,AD=AE=4,∠DAE=90°,
∴AM=2,
在Rt△ABC中,AB=AC=10,AN=5,
∴MN最大=2+5=7,
∴S△PMN最大=PM2=×MN2=×(7)2=

24.
(1)如图1,连接AC,交MN于点G.
∵四边形ABCD为正方形,∴BC=CD,且BM=DN,∴CM=CN,且AC平分∠BCD,∴AC⊥MN,且MG=GN,∴AM=AN.
∵AG⊥MN,∴∠MAG=∠NAG.
∵∠BAC=∠MAN=45°,即∠BAM+∠GAM=∠GAM+∠GAN,∴∠BAM=∠GAN=∠GAM.
在△ABM和△AGM中,∵,∴△ABM≌△AGM(AAS),∴BM=MG,同理可得GN=DN,∴BM+DN=MG+GN=MN.
故答案为:BM+DN=MN;
(2)猜想:BM+DN=MN,证明如下:
如图2,在MB的延长线上,截取BE=DN,连接AE.
在△ABE和△ADN中,∵,∴△ABE≌△ADN(SAS),∴AE=AN,∠EAB=∠NAD.
∵∠BAD=90°,∠MAN=45°,∴∠BAM+∠DAN=45°,∴∠EAB+∠BAM=45°,∴∠EAM=∠NAM.
在△AEM和△ANM中,∵,∴△AEM≌△ANM(SAS),∴ME=MN,又ME=BE+BM=BM+DN,∴BM+DN=MN;
(3)DN﹣BM=MN.证明如下:
如图3,在DC上截取DF=BM,连接AF.
△ABM和△ADF中,∵,∴△ABM≌△ADF(SAS),∴AM=AF,∠BAM=∠DAF,∴∠BAM+∠BAF=∠BAF+∠DAF=90°,即∠MAF=∠BAD=90°.
∵∠MAN=45°,∴∠MAN=∠FAN=45°.
在△MAN和△FAN中,∵,∴△MAN≌△FAN(SAS),∴MN=NF,∴MN=DN﹣DF=DN﹣BM,∴DN﹣BM=MN.