人教版八年级数学上册课时练
第十四章
整式的乘法与因式分解
14.3.2
公式法
一、选择题
1.因式分解x2+mx﹣12=(x+p)(x+q),其中m、p、q都为整数,则这样的m的最大值是( )
A.1
B.4
C.11
D.12
2.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a2+b2+c2—ab-bc-ca的值等于(
)
A.0
B.1
C.2
D.3
3.如果四个互不相同的正整数m,n,p,q满足(6-m)(6-n)(6-p)(6-q)=4,那么m+n+p+q=(??
)
A.24
B.25
C.26
D.28
4.多项式x2﹣4xy﹣2y+x+4y2分解因式后有一个因式是x﹣2y,另一个因式是( )
A.x+2y+1
B.x+2y﹣1
C.x﹣2y+1
D.x﹣2y﹣1
5.把多项式分解因式正确的是(
)
A.
B.
C.
D.
6.下列四个多项式,可能是2x2+mx-3
(m是整数)的因式的是
A.x-2
B.2x+3
C.x+4
D.2x2-1
7.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是( )
A.0
B.1
C.2
D.3
8.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如4=22﹣02,12=42﹣22,20=62﹣42,因此
4,12,20
都是“神秘数”,则下面哪个数是“神秘数”(
)
A.56
B.60
C.62
D.88
9.对二次三项式4x2﹣6xy﹣3y2分解因式正确的是( )
A.
B.
C.
??????????????????????
D.
10.在日常生活中如取款、上网等都需要密码.有一种用“因式分解法”产生的密码方便记忆,如:对于多项式,因式分解的结果是,若取,
时,则各个因式的值为,
,
,于是就可以把“”作为一个六位数的密码.对于多项式,取,
时,用上述方法产生的密码不可能是(
)
A.201030
B.201010
C.301020
D.203010
二、填空题
11.在实数范围内因式分解:____________
12.=_______.
13.在学习对二次三项式x2+ax+b进行因式分解时,粗心的小明由于看错了a,而分解的结果是(x+4)(x-3),小红看错b而分解的结果是(x+1)(x-5).相信聪明的你能写出正确的分解结果是_________.
14.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:、例如18可以分解成1×18,2×9,3×6这三种,这时就有.给出下列关于F(n)的说法:(1);(2);(3)F(27)=3;(4)若n是一个整数的平方,则F(n)=1.其中正确说法的有_____.
15.正数满足,那么______.
三、解答题
16.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.
解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0
∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.
根据你的观察,探究下面的问题:
(1)已知x2+2xy+2y2+2y+1=0,求2x+y的值;
(2)已知a﹣b=4,ab+c2﹣6c+13=0,求a+b+c的值.
17.观察下列因式分解的过程:
(1)x2﹣xy+4x﹣4y
=(x2﹣xy)+(4x﹣4y)(分成两组)
=x(x﹣y)+4(x﹣y)直接提公因式)
=(x﹣y)(x+4)
(2)a2﹣b2﹣c2+2bc
=a2﹣(b2+c2﹣2bc)(分成两组)
=a2﹣(b﹣c)2(直接运用公式)
=(a+b﹣c)(a﹣b+c)
(1)请仿照上述分解因式的方法,把下列各式分解因式:
①
②
(2)请运用上述分解因式的方法,把多项式1+x+x(1+x)+x(1+x)2+…+x(1+x)n分解因式.
18.材料1:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.例如:,都是因式分解.因式分解也可称为分解因式.
材料2:只含有一个未知数,且未知数的最高次数是的整式方程称作一元二次方程.一元二次方程的般形式是:(其中,,为常数且).“转化”是一种重要的数学思想方法,我们可以利用因式分解把部分一元二次方程转化为一元一次方程求解.
例如解方程;
或
原方程的解是,
∴原方程的解是,
又如解方程:
原方程的解是
请阅读以上材料回答以下问题:
(1)若,则_______;_______;
(2)请将下列多项式因式分解:
_______,________;
(3)在平面直角坐标系中,已知点,,其中是一元二次方程的解,为任意实数,求长度的最小值.
19.(阅读与思考)
整式乘法与因式分解是方向相反的变形.如何把二次三项式进行因式分解呢?我们已经知道,a1x
c1a2x
c2
a1a2x2
a1c2x
a2c1x
c1c2
a1a
x2
a1c2
a2c1
x
c1c2.
反过来,就得到:.
我们发现,二次项的系数a分解成,常数项c分解成,并且把a1,
a2
,
c1
,
c2如图①所示摆放,按对角线交叉相乘再相加,就得到,如果的值正好等于ax2+bx+c的一次项系数b,那么就可以分解为a1x
c1
a2
x
c2
,其中a1
,
c1位于图的上一行,a2
,
c2位于下一行.
像这种借助画十字交叉图分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做“十字相乘法”.
例如,将式子分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即1=1×1,把常数项-6也分解为两个因数的积,即-6=2×(-3);然后把1,1,2,-3按图②所示的摆放,按对角线交叉相乘再相加的方法,得到1×(-3)+1×2=
-1,恰好等于一次项的系数-1,于是就可以分解为(x
2)(x
3).
请同学们认真观察和思考,尝试在图③的虚线方框内填入适当的数,并用“十字相乘法”分解因式:=
.
(理解与应用)
请你仔细体会上述方法并尝试对下面两个二次三项式进行分解因式:
(1)=
;
(2)=
.
(探究与拓展)
对于形如的关于x,y的二元二次多项式也可以用“十字相乘法”来分解.如图④,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq
np
b
,
pk
qj
e
,mk
nj
d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=
mx
py
jnx
qy
k
,请你认真阅读上述材料并尝试挑战下列问题:
(1)分解因式=
;
(2)若关于x,y的二元二次式可以分解成两个一次因式的积,求m的值;
(3)已知x,y为整数,且满足,请写出一组符合题意的x,y的值.
20.阅读下面材料,解答后面的问题:“十字相乘法”能将二次三项式分解因式,对于形如的关于,的二次三项式来说,方法的关键是将项系数分解成两个因数,的积,即,将项系数分解成两个因式,的积,即,并使正好等于项的系数,那么可以直接写成结果:
例:分解因式:
解:如图1,其中,,而
所以
而对于形如的关于,的二元二次式也可以用十字相乘法来分解.如图2.将分解成乘积作为一列,分解成乘积作为第二列,分解成乘积作为第三列,如果,,即第1、2列,第2、3列和第1、3列都满足十字相乘规则,则原式
例:分解因式
解:如图3,其中,,
而,,
所以
请同学们通过阅读上述材料,完成下列问题:
(1)分解因式:①
.
②
.
(2)若关于,的二元二次式可以分解成两个一次因式的积,求的值.
21.观察下列式子的因式分解做法:
①x2-1=(x-1)(x+1);
②x3﹣1
=x3﹣x+x﹣1
=x(x2﹣1)+x﹣1
=x(x﹣1)(x+1)+(x﹣1)
=(x﹣1)[x(x+1)+1]
=(x﹣1)(x2+x+1);
③x4﹣1
=x4﹣x+x﹣1
=x(x3﹣1)+x﹣1
=x(x﹣1)(x2+x+1)+(x﹣1)
=(x﹣1)[x(x2+x+1)+1]
=(x﹣1)(x3+x2+x+1);
…
(1)模仿以上做法,尝试对x5﹣1进行因式分解;
(2)观察以上结果,猜想xn﹣1=
;(n为正整数,直接写结果,不用验证)
(3)根据以上结论,试求45+44+43+42+4+1的值.
22.把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.
如:①用配方法分解因式:a2+6a+8,
解:原式=a2+6a+8+1-1=a2+6a+9-1
=(a+3)2-12=
②M=a2-2a-1,利用配方法求M的最小值.
解:
∵(a-b)2≥0,∴当a=1时,M有最小值-2.
请根据上述材料解决下列问题:
(1)用配方法因式分解:.
(2)若,求M的最小值.
(3)已知x2+2y2+z2-2xy-2y-4z+5=0,求x+y+z的值.
23.阅读以下内容解答下列问题.
七年级我们学习了数学运算里第三级第六种开方运算中的平方根、立方根,也知道了开方运算是乘方的逆运算,实际上乘方运算可以看做是“升次”,而开方运算也可以看做是“降次”,也就是说要“升次”可以用乘方,要“降次”可以用开方,即要根据实际需要采取有效手段“升”或者“降”某字母的次数.本学期我们又学习了整式乘法和因式分解,请回顾学习过程中的法则、公式以及计算,解答下列问题:
(1)对照乘方与开方的关系和作用,你认为因式分解的作用也可以看做是
.
(2)对于多项式x3﹣5x2+x+10,我们把x=2代入此多项式,发现x=2能使多项式x3﹣5x2+x+10的值为0,由此可以断定多项式x3﹣5x2+x+10中有因式(x﹣2),(注:把x=a代入多项式,能使多项式的值为0,则多项式一定含有因式(x﹣a)),于是我们可以把多项式写成:x3﹣5x2+x+10=(x﹣2)(x2+mx+n),分别求出m、n后再代入x3﹣5x2+x+10=(x﹣2)(x2+mx+n),就可以把多项式x3﹣5x2+x+10因式分解,这种因式分解的方法叫“试根法”.
①求式子中m、n的值;
②用“试根法”分解多项式x3+5x2+8x+4.
【参考答案】
1.C
2.D
3.A
4.C
5.B
6.B
7.D
8.B
9.D
10.B
11.
12.
13.(x+2)(x-6)
14.2
15.64
16.(1)1;(2)3.
17.(1)①(d﹣c)(a﹣b);②(x﹣3+y)(x﹣3﹣y);(2)(1+x)n+1
18.(1),;(2),;(3).
19.阅读与思考:图略,
x-
3
x
2;理解与应用:(1)
x
12x
7;(2)2x
y3x
2y;探究与拓展:(1)x
2y
13x
y
4;(2)43或-78;(3)x=-1,y=0.
20.(1);;(2)61或-82.
21.(1)(x﹣1)(x4+x3+x2+x+1)(2)(x﹣1)(xn﹣1+xn﹣2+…+x2+x+1)(3)
22.(1);(2);(3)4.
23.(1)降次;(2)①m=﹣3,n=﹣5;②(x+1)(x+2)2