(共13张PPT)
勾股定理的应用举例
两点之间,
最短。
线段
济宁十二中:
陈伟利
做一做:
李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,
(1)你能替他想办法完成任务吗?
(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?
做一做:
做一做:
(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?
图(1)
图(2)
A
B
C
下图是学校的旗杆,旗杆上的绳子垂到了地面,并多出了一段,现在老师想知道旗杆的高度,你能帮老师想个办法吗?请你与同伴交流设计方案?
问题的延伸
图(1)
图(2)
A
B
C
小明发现旗杆上的绳子垂到地面还多1米,如图(1),当他们把绳子的下端拉开5米后,发现下端刚好接触地面,如图(2),你能帮他们把旗杆的高度和绳子的长度计算出来吗?请你与同伴交流并回答用的是什么方法.
试一试:
在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?
D
A
B
C
解:设水池的水深AC为x尺,则这根芦苇长AD=AB=(x+1)尺,
在直角三角形ABC中,BC=5尺
由勾股定理得,BC2+AC2=AB2
即
52+
x2=
(x+1)2
25+
x2=
x2+2
x+1,
2
x=24,
∴
x=12,
x+1=13
答:水池的水深12尺,这根芦苇长13尺。
通过今天的学习,
用你自己的话说说你的收获和体会?
你学会了吗?
本节课主要是应用勾股定理和它的逆定理来解决实际问题,在应用定理时,应注意:1、没有图的要按题意画好图并标上字母;2、不要用错定理。